Качество питьевой воды в Казахстане

Мониторинг и оценка качества питьевой воды в Казахстане осуществляется согласно Санитарным правилам «Санитарно-эпидемиологические требования к водозабора для хозяйственно-питьевых водоисточникам, местам хозяйственно-питьевому водоснабжению И местам культурно-бытового водопользования и безопасности водных объектов»¹, который утвержден Приказом Министра национальной экономики Республики Казахстан от 16 марта 2015 года № 209. Согласно данным санитарным правилам «питьевая вода должна быть безопасна в эпидемическом и радиационном отношении, безвредна по химическому составу, и иметь благоприятные органолептические свойства».

Рисунок 1

Требования к качеству питьевой воды определяется по следующим показателям:

Таблица 1 Обобщенные показатели химических веществ питьевой воды

№ п/п	Показатели	Единицы измерения	Нормативы (предельно допустимые концентрации - ПДК), не более	Показатель вредности	Класс опасности
1	2	3	4	5	6
	Обобщенные показатели				
1	Водородный показатель	единицы рН	в пределах 6-9		

¹ «Санитарно-эпидемиологические требования к водоисточникам, местам водозабора для хозяйственно-питьевых целей, хозяйственно-питьевому водоснабжению и местам культурно-бытового водопользования и безопасности водных объектов»¹, который утвержден Приказом Министра национальной экономики Республики Казахстан от 16 марта 2015 года № 209 http://adilet.zan.kz/rus/docs/V1500010774

2	Общая минерализация (сухой остаток)	мг/л	1000 (1500)		
3	Жесткость общая	мг-экв./л	7,0 (10)		
4	Окисляемость перманганатная	мг/л	5,0		
5	Нефтепродукты, суммарно	мг/л	0,1		
6	Поверхностно-активные вещества (ПАВ), анионо-активные	мг/л	0,5		
7	Фенольный индекс	мг/л	0,25		
Heo	рганические вещества	<u> </u>	1	1	1
8	Алюминий (A1 ³⁺)	мг/л	0,5	ст.	2
9	Барий (Ba ²⁺)	мг/л	0,1	ст.	2
10	Бериллий (Be ²⁺)	мг/л	0,0002	ст.	1
11	Бор (В, суммарно)	мг/л	0,5	ст.	2
12	Железо (Fe, суммарно)	мг/л	0,3 (1,0)	орг.	3
13	Кадмий (Cd, суммарно)	мг/л	0,001	ст.	2
14	Марганец (Мп, суммарно)	мг/л	0,1 (0,5)	орг.	3
15	Медь (Си, суммарно)	мг/л	1,0	Орг	3
16	Молибден (Мо), суммарно)	мг/л	0,25	ст.	2
17	Мышьяк (As, суммарно)	мг/л	0,05	ст.	2
18	Никель (Ni, суммарно)	мг/л	0,1	ст.	3
19	Нитраты (по NO ₃)	мг/л	45	ст.	3
20	Ртуть (Hg, суммарно)	мг/л	0,0005	ст.	1
21	Свинец (Pb, суммарно)	мг/л	0,03	ст.	2
22	Селен (Se, суммарно)	мг/л	0,01	с-т.	2
23	Стронций (Sr^{2+})	мг/л	7,0	ст.	2
24	Сульфаты (SO ₄)	мг/л	500	Орг	4
Фто	риды (F) для климатических	районов:			
25	I и II	мг/л	1,5	ст.	2
26	III	мг/л	1,2	ст.	2
27	Хлориды (CL ⁻)	мг/л	350	орг.	4
28	Хром (Cr ⁶⁺)	мг/л	0,05	ст.	3
29	Цианиды (CN~)	мг/л	0,035	ст.	2
30	Цинк (Zn ²⁺)	мг/л	5,0	орг.	3
Орг	анические вещества:				
31	У ГХЦГ (линдан)	мг/л	0,002	ст.	1
32	ДДТ (сумма изомеров)	мг/л	0,002	ст.	2
33	2,4-Д	мг/л	0,03	ст.	2

Примечание:

- 1) лимитирующий признак вредности вещества, по которому установлен норматив: с.-т. санитарно-токсикологический, орг.-органолептический;
- 2) величина, указанная в скобках, может быть установлена по постановлению главного государственного санитарного врача соответствующей территории для конкретной системы водоснабжения на основании оценки санитарно-эпидемиологической обстановки в населенном пункте и применяемой технологии водоподготовки;
 - 3) нормативы
 - ГХЦГ (линдан), ДДТ (сумма изомеров), 2,4-Д приняты в соответствии с рекомендациями ВОЗ.

Таблица 2 Химические вещества, образующиеся в воде в процессе ее обработки в системе водоснабжения

№ п/п	Показатели	Единицы измерения	Нормативы (предельно допустимые концентрации ПДК) не более	Показатель вредности	Класс опасности
1	2	3	4	5	6
	Хлор:				
1	остаточный свободный	мг/л	в пределах 0,3 – 0,5	Орг.	3
2	остаточный связанный	мг/л	в пределах 0,8 - 1,2	Орг.	3
3	Хлороформ (при хлорировании воды)	мг/л	0,2	ст.	2
4	Озон остаточный	мг/л	0,3	Орг.	
5	Формальдегид (при озонировании воды)	мг/л	0,05	ст.	2
6	Полиакриламид	мг/л	2,0	ст.	2
7	Активированная кремне- кислота (по Si)	мг/л	10	ст.	2
8	Полифосфаты (по РО ₄ ~)	мг/л	3,5	Орг.	3

Примечание:

1) при обеззараживании воды свободным хлором: время его контакта с водой должно составлять не менее 30 минут, связанным хлором - не менее 60 минут. Контроль за содержанием остаточного хлора производится перед подачей воды в распределительную сеть.

При одновременном присутствии в воде свободного и связанного хлора их общая концентрация не должна превышать 1,2 мг/л.

- В отдельных случаях, по согласованию с территориальным управлением государственного санитарно-эпидемиологического надзора, концентрация хлора в питьевой воде может быть повышена до 1 мл/л;
- 2) норматив хлороформа принят в соответствии с рекомендациями ВОЗ; 3) контроль содержания остаточного озона производится после камеры смешения при обеспечении времени контакта не менее 12 минут.

Таблина 4

Органолептические показатели качества питьевой воды

№ π/π	Показатели	Единицы измерения	Нормативы, не более
1	2	3	4
1	Запах	баллы	2
2	Привкус	баллы	2
3	Цветность	градусы	20 (35)
4	Мутность	ЕМФ (единицы мутности по формазину) или мг/л (по каолину)	2,6 (3,5) 1,5 (2)

Примечание:

Общая ^р -радиоактивность

1) величина, указанная в скобках, может быть установлена по постановлению главного государственного санитарного врача соответствующей территории для конкретной системы водоснабжения на основании оценки санитарно-эпидемиологической обстановки в населенном пункте и применяемой технологии водоподготовки.

Показатели радиационной безопасности питьевой воды

№ π/π	Показатели	Единицы измерения	Нормативы	Показатель вредности
1	2	3	4	5
1	Общая α-радиоактивность	Бк/л	0,1	Радиация
2	Общая в -радиоактивность	Бк/л	1,0	Радиация

Таблица 5 Микробиологические и паразитологические показатели качества питьевой воды

№ π/π	Показатели	Единицы измерения	Нормативы
1	2	3	4
1	Общее микробное число	Число образующих колонии бактерий в 1 мл	Не более 50
2	Общие колиформные бактерии ¹⁾	Число бактерий в 100 мл ¹⁾	Отсутствие
3	Термотолерантные колиформные бактерии ²⁾	Число бактерий в 100 мл ¹⁾	Отсутствие
4	Колифаги ³⁾	Число бляшкообразующих единиц (БОЕ) в 100 мл	Отсутствие
5	Цисты лямблий ³⁾	Число цист в 50 л	Отсутствие
6	Споры сульфитредуцирующих клостридий ⁴⁾	Число спор в 20 мл	Отсутствие

Примечание:

1) превышение норматива по общим колиформным бактериям не допускается в 95 % проб, отбираемых в точках водоразбора наружной и внутренней водопроводной сети в течение 12 месяцев, при количестве исследуемых проб не менее 100 за год;

- 2) при определении термотолерантных колиформных бактерий проводится трехкратное исследование по 100 мл отобранной пробы воды;
- 3) определение колифагов и цист лямблий проводится только в системах водоснабжения из поверхностных источников перед подачей воды в распределительную сеть;
- 4) определение спор сульфитредуцирующих клостридий проводится при оценке эффективности технологии обработки воды.

Лабораторный мониторинг за качеством питьевой воды осуществляется Департаментами охраны общественного здоровья Комитета охраны здравоохранения РК. общественного здоровья Министерства Согласно Санитарным правилам «Санитарно-эпидемиологические требования водоисточникам, водозабора ДЛЯ хозяйственно-питьевых местам целей, водоснабжению хозяйственно-питьевому культурно-бытового И местам водопользования и безопасности водных объектов» выбор контролируемых показателей питьевой воды, подлежащих постоянному производственному контролю, проводится лабораторией для каждой системы водоснабжения, на основании результатов оценки состава воды источников водоснабжения. На основании проведенного анализа составляется санитарно-эпидемиологическая характеристика конкретного источника водоснабжения микробиологическим показателям и химическому составу.

Минимальная частота проведения исследований для оценки качества воды, учитывая тип источника водоснабжения, считается для подземных и поверхностных источников — 1 раз в квартал. Для достижения более расширенной информации о химическом составе воды и динамике концентраций присутствующих в ней веществ, частота проведения исследований может увеличиваться до 12 раз в год, то есть ежемесячно.

Таблица 6
Количество и периодичность отбора проб воды, отбираемых в местах водозабора

$N_{\underline{0}}$	Виды показателей	Количество проб в течение одного года, не менее		
п/п		Для подземных источников	Для поверхностных источников	
1	2	3	4	
1	микробиологические	4 (по сезонам года)	4 (по сезонам года)	
2	паразитологические	Не проводятся	4 (по сезонам года)	
3	органолептические	4 (по сезонам года)	4 (по сезонам года)	
4	обобщенные показатели	4 (по сезонам года)	4 (по сезонам года)	
5	не органические и органические вещества	1	2	
6	радиологические	1	2	

Перечень показателей и количество исследуемых проб питьевой воды перед ее поступлением в распределительную сеть

Таблица 7

№ π/π	Виды показателей				обеспеченного ения, тыс. чел	
		для подземных источников		для поверхностных источников		
		до 20	20-100	свыше 100	до 100	свыше 100
1	2	3	4	5	6	7
1	микробиологически е	50 еженедельно	150 три раза в неделю	365 ежедневно	365 ежедневно	365 Ежедневно
2	паразитологические	не проводятся	не провод ятся	не проводятся	12 ежемесячно	12 ежемесячно
3	органолептические	50 еженедельно	150 три раза в неделю	365 ежедневно	365 ежедневно	365 Ежедневно
4	обобщенные показатели	4 в течение года	6 один раз в два месяца	12 ежемесячно	12 ежемесячно	24 два раза в месяц
5	Не органические и органические вещества	1 в течение года	1 в течение года	1 в течение года	4 в течение года	12 Ежемесячн о
6	показатели, связанные с технологией водоподготовки	остаточный хлор, остаточный озон — не реже одного раза в час; остальные реагенты не реже одного раза в смену				
7	радиологические	1	1	1	1	1

Территориальное подразделение ведомства государственного органа в сфере санитарно-эпидемиологического благополучия населения анализирует результаты расширенных исследований химического состава воды по каждой системе водоснабжения и с учетом оценки санитарно-гигиенических условий питьевого водопользования населения и эпидемиологической обстановки на территории определяет потенциальную опасность присутствующих в воде химических веществ для здоровья населения. На основании проведенной оценки

разрабатываются предложения по перечню контролируемых показателей, количеству и периодичности отбора проб питьевой воды для постоянного производственного контроля.

Требования к объектам водоснабжения, водоподготовки питьевой воды в РК

Системы питьевого водоснабжения населенных пунктов подразделяются на централизованные, нецентрализованные, различающиеся по типу источника водоснабжения и составу входящих в системы элементов. Централизованной системой водоснабжения является комплекс инженерных сетей и сооружений, предназначенный для забора, подготовки, хранения, транспортировки и подачи Нецентрализованной водопотребителям. питьевой воды системой водоснабжения водозаборные водоочистные являются И сооружения, предназначенные для забора и подготовки питьевой воды, без транспортировки ее по трубопроводам.

Согласно СТ РК ГОСТ Р 51232 – 2003 «Вода питьевая. Общие требования к организации и методам контроля качества» производственный контроль качества питьевой организуют осуществляют воды И (или) организации, эксплуатирующие системы водоснабжения И отвечающие качество подаваемой потребителю питьевой воды. Поэтому объекты водоснабжения и водоотведения имеют химико-бактериологические лаборатории, проводят контроль качества воды в соответствии нормативными документами. Лаборатории проводят химические и микробиологические исследования с целью осуществления контроля питьевой качества воды, подаваемой распределительную сеть населенных пунктов. Контроль осуществляется за источниками питьевой воды (поверхностными и подземными водными объектами), используемыми для добычи воды; технологическим процессом на станциях водоподготовки по этапам очистки и перед подачей в распределительную сеть. питьевой воды Объекты водоснабжения контроля качества водоотведения питьевой ДЛЯ воды В основном руководствуются следующими нормативно-правовыми документами:

«Санитарно-эпидемиологические правила -Санитарные водоисточникам, водозабора ДЛЯ хозяйственно-питьевых местам целей, хозяйственно-питьевому водоснабжению местам культурно-бытового водопользования и безопасности водных объектов», который утвержден Приказом Министра национальной экономики Республики Казахстан от 16 марта 2015 года № 209;

- ГОСТ 2874-82 «Вода питьевая. Гигиенические требования и контроль за качеством».

Международные требования к качеству питьевой воды в ЕС

Качество питьевой воды в Европейском союзе регулируется нормативным документом The Drinking Water Directive (Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption) с изменениями от 7.10.2015 г., который является обязательным для соблюдения всеми странами-членами Европейского союза.

При принятии директивы по питьевой воде в свое собственное национальное законодательство государства-члены Европейского союза могут включать дополнительные требования, например регулировать дополнительные вещества, которые имеют отношение к их территории, или устанавливать более высокие стандарты. Тем не менее государствам-членам не разрешается устанавливать более низкие стандарты, поскольку уровень защиты здоровья человека должен быть одинаковым во всем Европейском Союзе.

The Drinking Water Directive применяется к:

- -всем распределительным системам, обслуживающие более 50 человек или поставляющие более 10 кубометров в сутки, а также распределительным системам, обслуживающие менее 50 человек / поставляющие менее 10 кубометров в сутки, если вода подается в рамках хозяйственной деятельности;
 - -питьевой воде из автоцистерн;
 - -питьевой воде в бутылках или контейнерах;
- -воде, используемой в пищевой промышленности, если только компетентные национальные органы не убедятся в том, что качество воды не может повлиять на качество пищевых продуктов в их готовом виде.

The Drinking Water Directive устанавливает основные стандарты качества на уровне EC. В общей сложности 48 микробиологических, химических и индикаторных параметров должны регулярно контролироваться и проверяться. В целом руководящие принципы Всемирной организации здравоохранения в отношении питьевой воды и заключение научно- консультативного комитета Комиссии используются в качестве научной основы для разработки стандартов качества питьевой воды.

Требования к качеству питьевой воды согласно The Drinking Water Directive в EC определяется по следующим показателям:

Микробиологические параметры

Таблица 8

Параметр	Единица измерения
	(число/100 мл)
Эшерихия коли (Escherichia coli)	0
Энтерококки (Enterococcus)	0

К воде, выставленной на продажу в бутылках или контейнерах, относится следующее:

Параметр	Единица измерения
Эшерихия коли (Escherichia coli)	0/250 мл
Энтерококки (Enterococcus)	0/250 мл
Синегнойная палочка (Pseudomonas aeruginosa)	0/250 мл
Общее количество колоний при 22 °C	100/мл
Общее количество колоний при 37 °C	20/мл

Химические параметры

Параметр	Значения	Единица	Примечания
	параметра	измерения	
Акриламид	0,10·10 ⁻³	мг/л	Примечание 1
Сурьма	$5,0.10^{-3}$	мг/л	
Мышьяк	10.10-3	мг/л	
Бензол	1,0.10-3	мг/л	
Бензо(а)пирен	0,010·10 ⁻³	мг/л	
Бор	1,0	мг/л	
Броматы	10.10-3	мг/л	Примечание 2
Кадмий	5,0·10 ⁻³	мг/л	
Хром	50·10 ⁻³	мг/л	
Медь	2,0	мг/л	Примечание 3
Цианид	50·10 ⁻³	мг/л	
1,2-дихлорэтан	3,0·10 ⁻³	мг/л	
Эпихлоргидрин	$0,10\cdot10^{-3}$	мг/л	Примечание 1
Фторид	1,5	мг/л	
Свинец	10.10-3	мг/л	Примечания 3 и 4
Ртуть	1,0.10-3	мг/л	
Никель	20.10-3	мг/л	Примечание 3
Нитрат	50	мг/л	Примечание 5
Нитрит	0,50	мг/л	Примечание 5
Пестициды	0,10·10 ⁻³	мг/л	Примечания 6 и 7
Общее количество пестицидов	0,50·10 ⁻³	мг/л	Примечания 6 и 8
Полициклические ароматические углеводороды	0,10·10 ⁻³	мг/л	Сумма концентраций указанных соединений; Примечание 9
Селен	10.10-3	мг/л	
Тетрахлорэтен и Трихлорэтен	10·10 ⁻³	мг/л	Сумма концентраций указанных параметров
Тригалометаны-Общее количество	100·10 ⁻³	мг/л	Сумма концентраций указанных соединений; Примечание 10
Винилхлорид	0,50·10 ⁻³	мг/л	Примечание 1

Примечание 1: Параметрическое значение относится к остаточной концентрации мономера в воде, рассчитанной в соответствии со спецификациями максимального высвобождения соответствующего полимера при контакте с водой.

Примечание 2: По возможности, без ущерба для дезинфекции, государства-члены должны стремиться к более низкому значению.

Для воды, указанной в Статье 6 (1) (a), (b) и (d), значение должно быть достигнуто не позднее, чем через 10 календарных лет после вступления в силу Директивы. Параметрическое значение для бромата от пяти лет после вступления в силу настоящей Директивы до 10 лет после ее вступления в силу составляет 25 мкг / л.

Примечание 3: это значение применяется к пробе воды, предназначенной для потребления человеком, полученной с помощью соответствующего метода отбора проб (1) в кране и взятой таким образом, чтобы она была репрезентативной для среднего недельного значения, принимаемого потребителями. Там, где это уместно, методы отбора проб и мониторинга должны применяться согласованным образом и разрабатываться в соответствии со статьей 7(4). Государства-члены должны принимать во внимание возникновение пиковых уровней, которые могут оказывать неблагоприятное воздействие на здоровье человека.

Примечание 4: для воды, упомянутой в статье 6(1) (a), (b) и (d), эта величина должна быть достигнута не позднее чем через 15 календарных лет после вступления в силу настоящей директивы. Параметрическое значение свинца в период с пяти лет после вступления в силу настоящей директивы до 15 лет после ее вступления в силу составляет 25 мкг/л.

Государства-члены должны обеспечить принятие всех соответствующих мер для максимального снижения концентрации свинца в воде, предназначенной для потребления человеком, в течение периода, необходимого для достижения соответствия параметрическому значению.

При осуществлении мер по обеспечению соблюдения этой ценности государства-члены должны постепенно отдавать приоритет тем областям, где концентрация свинца в воде, предназначенной для потребления человеком, является наиболее высокой.

Примечание 5: государства-члены должны обеспечить соблюдение условия, что [нитрат]/50 + [нитрит]/3 \times 1, квадратные скобки, обозначающие концентрации в мг/л для нитратов (NO₃) и нитритов (NO₂), соблюдаются и что значение 0,10 мг/л для нитритов соблюдается при проведении работ по очистке воды.

Примечание 6 ' "пестициды" означает:

- органические инсектициды,
- органические гербициды,
- органические фунгициды,
- органические нематоциды,
- органические акарициды,
- органические альгициды,
- органические родентициды
- органические слимициды,
- сопутствующие товары (в частности, регуляторы роста)

и их соответствующие метаболиты, продукты распада и реакции.

Необходимо контролировать только те пестициды, которые, вероятно, присутствуют в данном источнике.

Примечание 7: параметрическое значение применяется к каждому отдельному пестициду. В случае Олдрина, дильдрина, гептахлора и эпоксида гептахлора параметрическое значение составляет 0,030 мкг/л.

Примечание 8 ' "пестициды-всего" означает сумму всех отдельных пестицидов, обнаруженных и количественно оцененных в рамках процедуры мониторинга.

Примечание 9: указанные соединения являются:

- бензо (b)флуорантен,
- бензо (к)флуорантен,

- бензо (ги)перилен,
- индено (1,2,3-cd)пирен.

Примечание 10: там, где это возможно, без ущерба для дезинфекции, государства-члены должны стремиться к более низкому значению. К указанным соединениям относятся: хлороформ, бромформ, диброхлорметан, бромдихлорметан.

Для воды, упомянутой в статье 6(1) (a), (b) и (d), эта величина должна быть достигнута не позднее чем через 10 календарных лет после вступления в силу настоящей директивы. Параметрическое значение для общего количества ТГМ с пяти лет после вступления в силу настоящей директивы до 10 лет после ее вступления в силу составляет 150 мкг/л.

Государства-члены должны обеспечить принятие всех необходимых мер для максимального снижения концентрации ТГМ в воде, предназначенной для потребления человеком, в течение периода, необходимого для достижения соответствия параметрическим значениям.

При реализации мер по достижению этого значения государства-члены должны постепенно отдавать приоритет тем областям, где концентрации ТГМ в воде, предназначенной для потребления человеком, являются самыми высокими.

Таблица 10

Индикаторные параметры

Параметры	Значения параметров	Ед.измерения	Примечания
Алюминий	200·10 ⁻³	мг/л	
Аммоний	0,50	мг/л	
Хлорид	250	мг/л	Примечание 1
Clostridium perfringens (включая споры)	0	число/100 мл	Примечание 2
Цвет	Приемлемо для потребителей и никаких аномальных изменений		
Проводимость	2 500	мкС/см при 20 °С	Примечание 1
Концентрация водородных ионов	в пределах 6,5- 9,5	значение рН	Примечание 1 и 3
Железо	200·10 ⁻³	мг/л	
Марганец	50·10 ⁻³	мг/л	
Запах	Приемлемо для потребителей и никаких аномальных изменений		
Окисляемость	5,0	мг/л О2	Примечание 4
Сульфат	250	мг/л	Примечание 1
Натрий	200	мг/л	

Вкус	Приемлемо для		
	потребителей и		
	никаких		
	аномальных		
	изменений		
Общее количество бактерий	Никаких		
при 22°	аномальных		
	изменений		
Бактерии колиформ	0	число/100 мл	Примечание 5
Общий органический углерод	Никаких		Примечание 6
(TOC)	аномальных		
	изменений		
Мутность	Приемлемо для		Примечание 7
	потребителей и		
	никаких		
	аномальных		
	изменений		

Таблица 11

Показатели радиационной безопасности

Параметр	Значения	Ед.измерения	Примечания
	параметра		
Тритий	100	Бк/л	Примечание 8 и 10
Общая ориентировочная доза	0,10	мЗв / год	Примечание 9 и 10

Примечание 1: вода не должна быть агрессивной.

Примечание 2: Этот параметр не нужно измерять, если только вода не происходит из поверхностных вод или не находится под их влиянием. В случае несоответствия этому параметрическому значению заинтересованное государство-член должно исследовать поставку, чтобы убедиться в отсутствии потенциальной опасности для здоровья человека, возникающей из-за присутствия патогенных микроорганизмов, например криптоспоридий. Государствачлены должны включать результаты всех таких расследований в доклады, которые они должны представлять в соответствии со статьей 13(2).

Примечание 3: для негазированной воды, помещенной в бутылки или контейнеры, минимальное значение может быть уменьшено до 4,5 единиц Ph.

Для воды, помещенной в бутылки или контейнеры, которые естественным образом богаты или искусственно обогащены углекислым газом, минимальное значение может быть ниже.

Примечание 4: Этот параметр не нужно измерять, если анализируется параметр ТОС.

Примечание 5: для воды, помещенной в бутылки или контейнеры, единица измерениячисло/250 мл.

Примечание 6: Этот параметр не обязательно измерять для поставок менее 10 000 м³ в день.

Примечание 7: в случае очистки поверхностных вод государства-члены должны стремиться к параметрическому значению, не превышающему 1,0 НТУ (нефелометрические единицы мутности) в работах по очистке воды.

Примечание 8: частоты мониторинга будут установлены позднее в приложении II.

Примечание 9: за исключением трития, калия -40, радона и продуктов распада радона; частоты мониторинга, методы мониторинга и наиболее подходящие места для точек мониторинга будут установлены позднее в приложении II.

Примечание 10: 1. Комиссия должна принять меры, требуемые в Примечании 8 о частотах мониторинга и Примечании 9 о частотах мониторинга, методах мониторинга и наиболее подходящих местах для точек мониторинга в Приложении II. Эти меры, предназначенные для изменения несущественных элементов настоящей Директивы, должны быть приняты в соответствии с нормативной процедурой с тщательной проверкой, указанной в Статья 12 (3). При разработке этих мер Комиссия должна учитывать, среди прочего, соответствующие положения существующего законодательства или соответствующих программ мониторинга, включая полученные на их основе результаты мониторинга.

2. Государство-член не обязано контролировать питьевую воду на наличие трития или радиоактивности для установления общей индикативной дозы, если оно убеждено, что на основе другого проведенного мониторинга уровни трития или рассчитанная общая индикативная доза значительно ниже параметрического значения. В этом случае он сообщает Комиссии об основаниях своего решения, включая результаты этого другого проведенного мониторинга.

Национальные требования к качеству питьевой воды в Швеции

Качество питьевой воды в Швеции регулируется нормативным документом Livsmedelsverkets föreskrifter om ändring i Livsmedelsverkets föreskrifter (SLVFS 2001:30) om dricksvatten (Постановления Национального управления пищевых продуктов о поправках к постановлениям Национального управления пищевых продуктов (SLVFS 2001: 30²) о питьевой воде) с изменениями от 21 сентября 2017 года.

Согласно 1 § данного нормативного документа питьевая вода это:

- «(а) любая вода, которая в исходном состоянии или после приготовления предназначена для питья, приготовления пищи или приготовления пищевых продуктов, независимо от ее происхождения и независимо от того, подается ли она через распределительную систему, из резервуаров, в бутылках или в контейнерах; и
- b) вся вода, используемая на предприятии по производству пищевых продуктов для производства, обработки, хранения или сбыта товаров или веществ, предназначенных для потребления человеком, за исключением случаев, когда предприятие может продемонстрировать контролирующему органу, что качество воды не может повлиять на здоровье готовых пищевых продуктов»

Согласно 2§ правила данного нормативного документа применяются «к обращению с питьевой водой и ее качеству, независимо от того, является ли обращение с ней частью профессиональной деятельности или нет.

Правила распространяются на объекты питьевого водоснабжения, такие как

² Livsmedelsverkets föreskrifter om ändring i Livsmedelsverkets föreskrifter (SLVFS 2001:30) om dricksvatten с изменениями от 21 сентября 2017 года https://www.livsmedelsverket.se/globalassets/om-oss/lagstiftning/dricksvatten---naturl-mineralv---kallv/livsfs-2017-2_web.pdf?AspxAutoDetectCookieSupport=1

- 1. обеспечивает в среднем 10 м³ питьевой воды или более в день, или
- 2. обеспечивает питьевой водой 50 и более человек.

Питьевая вода, поставляемая или используемая в рамках коммерческой или общественной деятельности, всегда подпадает под действие этих правил, независимо от масштаба деятельности. (LIVSFS 2017:2)».

LIVSFS 2017:2 устанавливает правила регулирования и контроля качества пиьтевой воды на территории Швеции. В данном нормативном документе предельные значения и значения параметров состоят из 3 разделов:

Раздел А. Предельные значения, при которых питьевая вода должна быть оценена как непригодная (І. Микробиологические параметры, ІІ. Химические параметры)

Раздел В. Предельные значения, при которых питьевая вода должна быть оценена как пригодная (І. Микробиологические параметры, ІІ. Химические параметры)

Раздел С. Значения параметров, превышение которых подлежит исследованию

Рисунок 4

Предельные значения и значения параметров

Раздел А. Предельные значения, при которых питьевая вода должна быть оценена как непригодная

І. Микробиологические параметры

Таблица 12

№	Параметр	Предельное значение для непригодных в точке			
		отбора проб (ед:	отбора проб (единица измерения)		
		Исходящая питьевая	Пакетированная		
		вода у пользователя (8	питьевая вода (8 § 5)		
		§ 1, 2, 3, 4)			
1	Культивирование микроорганизмов		100		
	при 22 ° С		(количество / мл)		
2	Культивирование микроорганизмов		20		
	при 36 ° С		(количество / мл)		
3	(Кишечная палочка)	Проверено	Проверено		
	Escherichia coli	(в 100 мл)	(в 250 мл)		
	(E. coli)				
4	Кишечные энтерококки	Проверено	Проверено		
		(в 100 мл)	(в 250 мл)		
5	Колиформные бактерии	10 (количество / 100	10 (количество / 250		
		мл)	мл)		
6	Синегнойная палочка		Проверено		
			(в 250 мл)		

II. Химические параметры

Таблица 13

№	Параметр	Предельное значение для непригодных в точке отбора проб (единица измерения)		
		Питьевая вода у Комментарий потребителя и фасованная питьевая вода (8 § 2, 3, 4, 5)		
1	Акриламид, рассчитанный	0,10 (μ Γ/π)	Предельное значение применяется к содержанию остаточного мономера в питьевой воде. Параметр должен быть исследован теоретическим расчетом, основанным на данных о содержании и максимальной миграции соответствующего полимера при контакте с питьевой водой.	
2	Сурьма	5,0 (µ г/л Sb)		
3	Мышьяк	10 (μ г/л Аѕ)		
4	Пестициды -	0,10 (μ г/π)	Предельное значение должно	
	индивидуальные		применяться к содержанию	

	T		
			каждого отдельного пестицида,
			который выявляется и
			количественно определяется в
			образце.
			Для альдрина, дильдрина,
			гептахлора и гептахлорепоксида
			применяется предел 0,030 мкг / л.
			Пестициды относятся к
			органическим веществам,
			используемым в качестве
			инсектицидов, гербицидов,
			фунгицидов, нематоцидов,
			акарицидов, альгицидов,
			родентицидов, слизистых
			пестицидов, регуляторов роста и
			аналогичных продуктов, а также
			соответствующих метаболитов,
			продуктов разложения и реакций.
5	Пестициды - общее	0,50 (µ г/л)	Предельное значение применяется
	содержание		к сумме уровней всех отдельных
			пестицидов, которые
			обнаруживаются и количественно
			определяются в образце.
			Пестициды относятся к
			органическим веществам,
			используемым в качестве
			инсектицидов, гербицидов,
			фунгицидов, нематоцидов,
			акарицидов, альгицидов,
			родентицидов, слизистых
			пестицидов, регуляторов роста и
			аналогичных продуктов, а также
			соответствующих метаболитов,
			продуктов разложения и реакций.
6	Бензол	1,0 (µ г/л)	
7	Бенз (а) пирен	0,010 (µ г/л)	См. Также параметр
			полициклических ароматических
		10(/ 51)	углеводородов (ПАУ) ниже.
8	Свинец	10(μ г/π Pb)	
9	Бор	1,0 (мг/л В)	
10	Бромат	10 (μ г/π BrO ₃)	
11	Цианид	50 (μ г/π CN)	Предельное значение относится к
		0.10 ()	общему содержанию цианида.
12	Эпихлоргидрин,	$0,10 \; (\mu \; \Gamma/\pi)$	Параметр необходимо проверить
	рассчитанный		теоретическим расчетом на основе
			от данных о содержании и
			максимальной миграции с
			соответствующий полимер при
			контакте с питьевой водой
13	1,2-дихлорэтан	3,0 (μ г/π)	
	1	1 - 2 / /	
14 15	Фторид Кадмий	1,5 (MΓ/π F) 5,0 (μΓ/π Cd)	

16	Медь	2,0 (мг/л Си)	
17	Хром	50 (μ г/л Сr)	
18	Ртуть	1,0 (μ г/л Нg)	
19	Запах	Ясный или очень сильный	Предельное значение относится к исследованию при 20 ° С. Предельное значение применяется, когда явный посторонний запах указывает на что вода настолько загрязнена, что ее нельзя использовать как питьевая вода или когда вода очевидна из-за сильного запаха неприятный.
20	Никель	20 (μ г/π Ni)	F
21	Нитрат	50 (мг/л NO ₃)	
22	Нитрит	0,50 (мг/л NO ₂)	Параметры $\frac{NO_3}{50} + \frac{NO_2}{0,5}$, на основе уровней NO ₃ и NO ₂ в мг / л должно быть ≤1.
23	рН (концентрация водородных ионов)	10,5 (единицы рН)	Предельное значение также применяется к исходящей питьевой воде, если Регулировка рН входит в состав препарата.
24	Полициклические ароматические углеводороды (ПАУ)	0,10 (μ Γ/π)	Предельное значение применяется к сумме содержания следующих вещества: бензо (b) флуорантен, бензо (k) флуорантен, бензо (ghi) перилен и инден (1,2,3-cd) пирен. Также параметр бенз (a) пирен выше.
25	Радон	> 1000 (Бк / л)	
26	Селен	10 (μ г/π Se)	
27	Вкус	Ясный или очень сильный	Предельное значение относится к исследованию при 20 ° С. Предельное значение применяется, когда явный посторонний привкус указывает на то, что вода настолько загрязнена, что ее нельзя использовать как питьевую воду или когда из-за очень сильного вкуса вода явно противно.
28	Тетрахлорэтен и трихлорэтен	10 (μ Γ/π)	Предельное значение применяется к сумме уровней указанных вещества.
29	Тригалометаны (ТНМ) - всего	100 (μ г/л)	Предельное значение применяется к сумме уровней хлороформа, бромоформ, дибромхлорметан и бромдихлорметан.

30	Винилхлорид,рассчитанный	0,50 (µ г/л)	Параметр необходимо проверить
			теоретическим расчетом на основе
			из данных о содержании и
			миграции полимера в
			контакт с питьевой водой.

Раздел В. Предельные значения, при которых питьевая вода должна быть оценена как пригодная с примечанием

І. Микробиологические параметры

Таблица 14

$N_{\underline{0}}$	Параметр	Предельное значение для полезного с			Комментарий
		примечанием в точке отбора проб (единица			
		измерения)			
		<mark>Исходящая</mark>	Питьевая	Бутиллированная	
		питьевая	<mark>вода у</mark>	вода	
		<mark>вода</mark>	потребителя	(8 § 5)	
		(8 § 1)	$(8 \S 2, 3, 4)$		
1	Актиномицеты		100		
			(количество		
			/ 100 мл)		
2	Культивируемые	10	100		Предельное
	микроорганизмы	(количество	(количество		значение для
	при 22 ° С	/ мл)	/ мл)		исходящей
					питьевой воды
					применяется к
					дезинфицированной
					питьевая вода.
					Всегда следует
					выяснять причину
					аномальных
			7 000		изменений.
3	Медленнорастущие		5000		
	бактерии		(количество		
4	G1		/ мл)	T.	т.
4	Clostridium		Проверено	Проверено	Предельное
	perfringens		(в 100 мл)	(в 250 мл)	значение
					применяется к
					количеству
					Clostridium
					perfringens, включая
_	TC 1	П	П	П	споры.
5	Колиформные	Проверено	Проверено	Проверено	
	бактерии	(в 100 мл)	(в 100 мл)	(в 250 мл)	
6	Микрогрибок		100		
			(количество		
			/ 100 мл)		

II. Химические параметры

Таблица 15

№	Параметр	Предельное значение для полезного с примечанием в точке отбора проб (единица измерения)		Комментарий
		Исходящая питьевая вода (8 § 1)	Питьевая вода у потребителя и фасованная питьевая вода (8 § 2, 3, 4, 5)	
1	Алюминий		0,100 (m г/л Al)	Предельное значение относится к общему содержанию алюминия.
2	Аммоний		0,50 (мг/л NH4)	
3	Цвет	15 (мг/л Pt)	30 (мг/л Pt)	Всегда следует выяснять причину аномальных изменений.
4	Железо	0,100 (мг/л Fe)	0,200 (мг/л Fe)	
5	Кальций		100 (мг/л Ca)	
6	Хлор, полностью активный	0,4 (мг/л Cl ₂)		
7	Хлористый		100 (мг/л Cl)	Вода не должна быть агрессивной (агрессивной).
8	Проводимость		250 (mS/m)	Предельное значение относится к исследованию при 20°С. Вода не должна быть агрессивной (агрессивной).
9	Медь		0,20 (мг/л Cu)	
10	Запах		Слабый	Предельное значение относится к исследованию при 20°С. Всегда следует выяснять причину аномальных изменений.
11	Магний		30 (мг/л Mg)	
12	Марганец		0,050 (мг/л Мп)	
13	Натрий		100 (мг/л Na)	Питьевую воду нельзя считать подходящей с

14 15	Нитрат Нитрит Окисляемость	0,10 (мг/л NO2)	20 (мг/л NO3	3)	отметкой о содержании натрия ниже 200 мг / л, если причина в том, что питьевая вода приготовлена путем замены ее натрием. Этот параметр не
	(перманганатный индекс)		(мг/л О2)		нужно измерять, если анализируется ТОС.
17	рН (концентрация водородных ионов)		< 6,5> 9,5		<4,5 единиц рН следует применять в качестве нижнего предела неподвижного (не газированная) фасованная питьевая вода. Нижний предел не должен применяется к фасованной питьевой воде, которая естественно богата диоксидом углерода или содержала им. Вода не должна быть агрессивной).
10	Радиоактивность	<u> </u>	10	10	T
18	Ориентировочная доза		(1	,10 мЗв / год)	Тритий, калий-40 и радон и продукты его разложения не входит в ориентировочную дозу.
19	Радон		(1	- 100 Бк / л)	
20	Вкус			Слабый	Предельное значение относится к исследованию при 20° С. Всегда следует выяснять причину аномальных изменений.
21	Сульфат			00 мг/л SO4)	Вода не должна быть агрессивной

				(агрессивной).
22	Температура	20 (°C)		, •
23	Общий		Предельное	
	органический		значение ТОС в	
	углерод		текущей питьевой	
	(TOC)		воде	
			рассчитывается	
			следующим	
			образом. В течение	
			двух лет	
			окисляемость и	
			ТОС измеряются	
			одновременно	
			несколько раз в год.	
			Затем результаты	
			измерений	
			используются для	
			определения	
			процентного	
			соотношения между	
			ТОС и	
			окисляемостью.	
			Установленный	
			соотношение	
			используется для	
			расчета	
			предельного	
			значения ТОС,	
			которое должно	
			соответствовать	
			предельному	
			значению	
			окисляемости.	
24	Тригалометаны		50	Предельное значение
	(ТНМ) - всего		(μ г/л)	применяется к сумме
	`			уровней
				хлороформа,
				бромоформ,
				дибромхлорметан и
				бромдихлорметан.
25	Мутность	0,5	1.5	Всегда следует
		(ФНУ, НТУ)	(ФНУ, НТУ)	расследовать
		(,,	(,)	причины
				аномальных
				изменений.
				mononomin.

Раздел С. Значения параметров, превышение которых подлежит исследованию

Таблица 16

№	Параметр	Значение параме пробы (единица)	тра в точке отбора	Комментарий
		Исходящая	Питьевая вода у	
		питьевая вода	потребителя	
			и фасованная	
			питьевая вода	
1	Общая альфа-		0,1 Бк / л	Если значение параметра
	активность			превышено, должны
				соблюдаться условия,
				изложенные в
				Приложении В, Раздел
				В, Часть ІІ.
2	Общая бета-		1,0 Бк / л	Если значение параметра
	активность			превышено, должны
				соблюдаться условия,
				изложенные в
				Приложении В, Раздел
				В, Часть ІІ.
3	Тритий		100 Бк / л	Если значение параметра
				превышено, должны
				соблюдаться условия,
				изложенные в
				Приложении В, Раздел
				В, Часть II.

Технологические химикаты для приготовления питьевой воды согласно разделу 5

Раздел А. Список разрешенных технологических химикатов

Таблица 17

Технологические химикаты и цель	Условия
Для ингибирования покрытия перед	
мембранами обратного осмоса	
Товар "Амероял 363"	Дозировка продукта не должна превышать 5 г /
Товар "Амероял 642"	M^3 .
Изделие "Kemguard 5800"	Дозировка продукта не должна превышать 5 г /
Изделие "Kemguard 5802E"	M^3 .
Для ингибирования покрытия перед нанофильтрацией	
Товар "Амероял 363"	Дозировка продукта не должна превышает 5 г / ${\rm m}^3$
Изделие «Kemguard 5800»	Дозировка продукта не должна превышает 5 г /

Изделие «Кемгард 5802E» \mathbf{M}^3 Для дезинфекции и окисления Гипохлорит кальция Дозировка, как правило, не должна превышать $1,0 \, \Gamma \, / \, M^3$ в пересчете на Cl_2 , если не Хлор предусмотрена специальная подготовка для Гипохлорит натрия снижения содержания хлористых соединений. Диоксид хлора Дозировка хлорита натрия (NaClO₂) и хлората натрия (NaClO₃) для производства диоксида хлора, как правило, не должна превышать 0,7 г $/ \, {\rm M}^3$, если только не предусмотрена специальная стадия подготовки для восстановления соединений хлора. Перманганат калия Только для окисления Для дезинфекции и окисления Озон перекись водорода Для производства озона и окисления аэрацией. Кислород Для производства монохлорамина Аммиак Хлорид аммония Сульфат аммония Для осаждения и коагуляции Сульфат алюминия Сульфат алюминия-калия Хлорид / сульфат железа (II) Хлорид / сульфат железа (III) Хлорид / сульфат кальция Алюминат натрия Хлорид полиалюминия силикат Хлорид / сульфат полиалюминия Силикат натрия (жидкое стекло) Может быть активирован другим веществом известен приготовлением питьевой воды Средняя дозировка не должна превышать 0,5 г Полиакриламид / M^3 в расчете на активное вещество. Сополимер полиакриламида и акриловой кислоты Дозировка продукта не должна превышать 5 г/ Изделие «Hydrex 3841»

 \mathbf{M}^3 .

Для регулирования рН и подщелачивания гидроксид кальция (гашеная известь)

Изделие "Hydrex 3842"

Изделие "Собра 10" Изделие "Собра 20"

Для регулирования рН и подщелачивания

Карбонат кальция (известняк, мрамор, мел)

Суспензии карбоната кальция, дозированные до химического осаждения или инфильтрации, могут содержать максимум 0,5% полиакрилата натрия в расчете на сухой карбонат кальция. Содержание мономера (акриловой кислоты) в полиакрилате натрия не должно превышать 0,1%, а дозировка суспензии не должна превышать 75 г/м³.

Карбонат кальция, оксид магния (полуобожженный доломит) Карбонат кальция и магния (доломит) Оксид кальция (негашеная известь) Карбонат калия Двуокись углерода (углекислый газ) Гидроксид натрия (щелок, раствор гидроксида натрия) Карбонат натрия (сода) Бикарбонат натрия (бикарбонат) Соляная кислота

Серная кислота

Для других целей Активированный уголь Для адсорбционных целей

Хлорид кальция Для регулировки содержания кальция. Дозировка не должна превышать 30 г/м³ воды.

Перманганат калия Для регенерации фильтров из железа и марганца

Натрия хлорид Для регенерации ионообменных фильтров

Раздел В. Максимально допустимые загрязнители в химикатах для осаждения, регулирования рH и подщелачивания

Таблица 18

	Кадмий	Свинец	Хром	Ртуть	Мышьяк
Наивысшее содержание (мг / кг активного	1	10	20	0,5	10
вещества)					

Раздел С. Максимально допустимое содержание мономера в полиакриламиде Уровни мономера в полиакриламиде не должны превышать 500 мг/кг.

Общее сравнение методологии по определению качества питьевой воды в РК и в ЕС.

Количество показателей оценки качества воды в нормативных документах Казахстана по микробиологическим и паразитологическим параметрам-6, по химическим -33, по химическим веществам, образующиеся в воде, в процессе ее обработки в системе водоснабжения -9, по органолептическим показателям -4, по радиационной безопасности -2.

А в нормативных документах EC по микробиологическим и паразитологическим параметрам-7, по химическим — 26, по индикаторным параметрам — 15 (включая 4 органолептических показателей), по радиационной безопасности — 2.

Сравнение казахстанских норм качества питьевой воды по Санитарным правилам «Санитарно-эпидемиологические требования к водоисточникам, местам водозабора для хозяйственно-питьевых целей, хозяйственно-питьевому водоснабжению и местам культурно-бытового водопользования и безопасности водных объектов», который утвержден Приказом Министра национальной экономики Республики Казахстан от 16 марта 2015 года № 209 с нормами ЕС показывает, что по некоторым параметрам наши нормы соответвуют требованиям ЕС (общие колиформные бактерии, водородный показатель, окисляемость перманганатная, селен (Se, суммарно), фториды (F), хром (Ст⁶⁺⁾).

Однако, существуют показатели, которые **не нормируются в ЕС**: термотолерантные колиформные бактерии, колифаги, цисты лямблий, общая жесткость воды, общая минерализация (сухой остаток), нефтепродукты суммарно, поверхностно-активные вещества (ПАВ) анионо-активные, фенольный индекс, барий (Ba^{2+}), бериллий (Be^{2+}), кальций, магний, молибден (Mo) суммарно, стронций (Sr2+), цинк (Zn2+), хлор полностью активный Cl_2 , ГХЦГ (линдан), ДДТ (сумма изомеров), 2,4-Д, общая α -радиоактивность, общая β –радиоактивность, радон. Общая жесткость воды в данный момент не нормируется Директивой ЕС, но в странах-членах ЕС этот показатель регламентируется самостоятельно на национальном уровне, собственными нормативными документами.

Также есть показатели, которые не нормируются в отечественном нормативном документе: эшерихия коли (Escherichia coli), энтерококки (Enterococcus), синегнойная палочка (Pseudomonas aeruginosa), актиномицеты, медленнорастущие бактерии, микрогрибок, проводимость воды, акриламид, аммоний, натрий, сурьма, бензол, бензо(а)пирен, броматы, кальций, магний, хлор полностью активный, 1,2-дихлорэтан, эпихлоргидрин, нитрит, пестициды, общее количество пестицидов, полициклические ароматические углеводороды, тетрахлорэтен и трихлорэтен, тригалометаны-общее количество, винилхлорид, общий органический углерод, радон, тритий, общая ориентировочная доза.

Показатель удельной электропроводности воды связен минерализацией воды, так как известно, что величина минерализации равная 1000 мг/л приблизительно

электропроводности 2мСм/см $(2000 \text{ MKCM/cm})^3$. соответствует удельной Санитарные «Санитарно-эпидемиологические требования правила водозабора водоисточникам, ДЛЯ хозяйственно-питьевых местам хозяйственно-питьевому водоснабжению культурно-бытового местам И безопасности водных который утвержден водопользования и объектов», Приказом Министра национальной экономики Республики Казахстан от 16 марта 2015 года № 209 устанавливают общую минерализацию воды 1000(1500) мг/л, а The Drinking Water Directive предусмотрена удельная электропроводность воды не более 2500мкСм/см. Исходя из этих данных, известно что отечественные регламентируют нормативные документы более жесткие требования минерализации воды.

По сравнению с требованиям в ЕС в нормативном документе РК допускаются в несколько раз большие значения содержания в питьевой воде веществ содержащих алюминий, бор (В, суммарно), железо (Fe, суммарно), марганец (Мп, суммарно), мышьяк (Аs, суммарно), никель (Ni, суммарно), свинец (Pb, суммарно), сульфаты (SO_4), хлориды (CL^-). Но у нас более жесткие по сравнению с ЕС и Швецией, требования к содержанию в воде кадмия (Cd, суммарно), меди (Cu, суммарно), нитратов (по NO_3), ртути (Hg, суммарно) и цианидов (CN^-) (всего лишь по 5 показателям).

Национальными требованиями к качеству питьевой воды в Швеции является нормативный документ «Livsmedelsverkets föreskrifter om ändring i Livsmedelsverkets föreskrifter (SLVFS 2001:30) om dricksvatten» с изменениями от 21 сентября 2017 г, согласно которому количество показателей в разделе предельных значений, при которых питьевая вода должна быть оценена как непригодная, по микробиологическим параметрам-6, по химическим — 28, по органолептическим — 2; в разделе предельных значений, при которых питьевая вода должна быть оценена как пригодная, по микробиологическим параметрам-6, по химическим — 18, по органолептическим — 4, по радиационной безопасности-2.

Национальные требования к качеству питьевой воды в Швеции нормативному документу «Livsmedelsverkets föreskrifter om ändring i Livsmedelsverkets föreskrifter (SLVFS 2001:30) om dricksvatten» с изменениями от 21 сентября 2017 г. основывается на The Drinking Water Directive, однако существуют более жесткие требования по некоторым показателям, а также есть дополнительные показатели, которых нет в Директиве. К тому же в национальных требованиях Швеции есть предельные значения, после которого вода считается непригодной и есть предельные значения для того, чтобы считать питьевую воду пригодной.

_

 $^{^3}$ Источник литературы: Водоподготовка: Справочник/под ред.С.Е.Беликова.-М.:Аква-Терм, 2007.-240 с.

Сравнивая требования нормативного документа Швеции с EC и Республики Казахстан, можно выделить следующие показатели:

Показатели	РК	EC	Швеция
по микробиологическим по	оказателям:	<u> </u>	•
актиномицеты	Не нормируется	Не нормируется	100 (кол/100 мл)
медленнорастущие	Не нормируется	Не нормируется	5000 (кол/мл)
бактерии	1 17		
микрогрибок	Не нормируется	Не нормируется	100 (кол/100 мл)
термотолерантные	Отсутствие	Не нормируется	Не нормируется
колиформные бактерии			
колифаги	Отсутствие	Не нормируется	Не нормируется
цисты лямблий	Отсутствие	Не нормируется	Не нормируется
по химическим показатель	ям:	1 1	
общая жесткость воды		Не нормируется	Не нормируется
Кальций	Не нормируется	Не нормируется	100мг/л – для питьевой
			воды у потребителя и для
			бутиллированной воды
магний	Не нормируется	Не нормируется	30мг/л - для питьевой
			воды у потребителя и для
			бутиллированной воды
хлор полностью	Не нормируется	Не нормируется	0,4мг/л-для исходящей
<u>активный</u>			питьевой воды
Окисляемость	5,0 мг/л	5,0 мг/л	4,0 мг/л
перманганатная			
Алюминий (Al^{3+})	0,5 мг/л	0,2 мг/л	0,1 мг/л
Железо	0,3(0,1) мг/л	0,2 мг/л	0,1 мг/л-для исходящей
			питьевой воды;
			0,2 мг/л-для
			бутиллированной
			питьевой воды
<u>Натрий</u>	Не нормируется	200 мг/л	100 мг/л
Сульфаты (SO ₄)	500 мг/л	250 мг/л	100 мг/л
<u> Хлориды (CL⁻)</u>	350 мг/л	250 мг/л	100 мг/л
<u>Марганец</u>	0,1 мг/л	$0,05 \ { m M}{ m \Gamma}/{ m J}$	$0,05 \ { m M}{ m \Gamma}/{ m J}$
<u>Мышьяк</u>	0,05 мг/л	0,01 мг/л	0,01 мг/л
Никель	0,1 мг/л	0,02 мг/л	0,02 мг/л
Свинец	0,03 мг/л	0,01 мг/л	0,01 мг/л
по радиоактивности:			
Радон	Не нормируется	Не нормируется	>100-для питьевой воды у
			потребителя и
			бутиллированной воды.
			>1000-для непригодной
			воды
Общая α-	0,1	Не нормируется	0,1
радиоактивность			
Общая в -	1,0	Не нормируется	1,0
радиоактивность			

Таблица 12 Сравнительная таблица параметров определения качества питьевой воды в нормативных документах РК и ЕС

№	Показатель	Единица измерения	РК4	EC ⁵	Шве	еция ⁶
1	2	3	4	5	6	7
		Микробиологические пар	раметры		Предельные	Предельные
					значения, при	значения, при
					которых	которых
					питьевая вода	питьевая вода
					должна быть	должна быть
					оценена как	оценена как
		T	T		непригодная	пригодная
1	Эшерихия коли	(число/100 мл)	Не измеряется	для исходящей пить		
	(Escherichia coli)			0	0	
		(число/250 мл)	Не измеряется	для бутиллировані	ной воды	
				0	0	
2	Энтерококки (Enterococcus)	(число/100 мл)	Не измеряется	для исходящей питьевой воды		
				0	0	
		(число/250 мл)	Не измеряется	для бутиллировані	ной воды	
				0	0	
3	Синегнойная палочка	(число/250 мл)	Не измеряется	0	0	
	(Pseudomonas aeruginosa)					
4	Общее микробное число	Число образующих	Не более 50	при 22 °C -100/мл;	для	исходящая вода
		колонии бактерий в 1 мл		при 37 °C – 20/мл.	бутиллированн	- при 22 °C -
					ой воды:	10/мл;
					при 22 °C -	вода у
					100/мл;	потребителя -
					при 36 °C –	при 22°С -
					20/мл.	100/мл.

⁴ «Санитарно-эпидемиологические требования к водоисточникам, местам водозабора для хозяйственно-питьевых целей, хозяйственно-питьевому водоснабжению и местам культурно-бытового водопользования и безопасности водных объектов», который утвержден Приказом Министра национальной экономики Республики Казахстан от 16 марта 2015 года № 209

⁵ The Drinking Water Directive (Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption) с изменениями от 7.10.2015 г

⁶ Livsmedelsverkets föreskrifter om ändring i Livsmedelsverkets föreskrifter (SLVFS 2001:30) om dricksvatten с изменениями от 21 сентября 2017 года

5	Общие колиформные бактерии	Число бактерий в 100 мл	0	0-для исходящей питьевой воды	10-для исходящей питьевой воды	0-для исходящей питьевой воды и воды у потребителя
		Число бактерий в 250 мл	-	0- для бутиллированной	10-для	0- для
				воды	бутиллированн	бутиллированн
	T	H	0	TT	ой воды	ой воды
7	Термотолерантные колиформные бактерии (В состав группы входят представители рода Еѕснегісніа, также известного как Е.Сові, и отдельные представители Кlebsiella, Enterobacter и Сіtrobacter.) Колифаги (бактериофаги (вирусы бактерии), которые заражают бактериальную клетку, размножаются в ней и убивают её. Обычно	Число бактерий в 100 мл Число бляшкообразующих единиц (БОЕ) в 100 мл	0	Не измеряется Не измеряется	Не измеряется Не измеряется	
	неи и уоивают ее. Ооычно колифаги обитают в колиморфных бактериях.)					
8	Цисты лямблий	Число цист в 50 л	0	Не измеряется	Не изм	епяется
9	Споры	Число спор в мл	0/20 мл	0/100 мл	TIO HOM	0 (100 мл)-
	сульфитредуцирующих клостридий Clostridium perfringens	1				для исходящей питьевой воды 0 (250 мл)-для бутиллированн ой воды
10	Актиномицеты	Количество/100 мл	Не измеряется	Не измеряется		100 (кол/100 мл)
11	Медленнорастущие бактерии	Количество/100 мл	Не измеряется	Не измеряется		5000 (кол/мл)
12	Микрогрибок	Количество/100 мл	Не измеряется	Не измеряется		100 (кол/100 мл)

Органолептические показатели						
13	<mark>Запах</mark>	-	2 баллы	Приемлемо для	Ясный или очень	<u>Слабый</u>
				потребителей и никаких	<u>сильный</u>	при 20 ° С.
				аномальных изменений	при 20 ° С.	
14	Привкус	-	2 баллы	Приемлемо для	Ясный или очень	Слабый
				потребителей и никаких	<u>сильный</u>	при 20 ° С.
				аномальных изменений	при 20 ° С.	
15	Цветность	-	20 (35) градусы	Приемлемо для		<u>15(мг/л Pt)</u> – для
				потребителей и никаких		исходящей воды
				аномальных изменений		
						<u>30 (мг/л Pt)</u> – для
						питьевой воды у
						потребителя и
						бутиллированно
						й воды
16	Мутность	-	2,6 (3,5) ЕМФ	_ -		0,5 FNU – для
			(единицы	потребителей и никаких		исходящей воды
			мутности по	аномальных изменений		1,5 FNU – для
			формазину)			питьевой воды у
			или			потребителя и
			1,5 (2) мг/л (по			бутиллированно
			каолину)			й воды
	I -		не показатели		T	
17	Водородный показатель	единицы рН	в пределах 6-9	в пределах 6,5-9,5		в пределах 6,5-9,5
18	Жесткость общая	мг-экв./л	7,0 (10)*	Не измеряется	Не изм	еряется
19	Окисляемость	мг/л	5,0	5,0		4,0- для
	перманганатная					питьевой воды у
						потребителя и
						бутиллированно
-	0.5	,	1000 (1700)	**	**	й воды
20	Общая минерализация	мг/л	1000 (1500)	Не измеряется	Не изм	еряется
	(сухой остаток)					
21	Нефтепродукты, суммарно	МГ/Л	0,1	Не измеряется	Не изм	
22	Проводимость	мкС/см	Не измеряется	2500		2500- для
						питьевой воды у

						потребителя и бутиллированно й воды
23	Поверхностно-активные вещества (ПАВ), анионо-активные	мг/л	0,5	Не измеряется	Не измеряется	
24	Фенольный индекс	мг/л	0,25	Не измеряется		перяется
25	Акриламид	мг/л	Не измеряется	$0.10 \cdot 10^{-3}$	$0,10\cdot10^{-3}$	
26	Алюминий (Al ³⁺)	мг/л	0,5	0,2		0,1- для питьевой воды у потребителя и бутиллированно й воды
27	Аммоний	мг/л	Не измеряется	0,50		0,50- для питьевой воды у потребителя и бутиллированно й воды
28	Барий (Ba ²⁺)	мг/л	0,1	Не измеряется	Не изм	перяется
29	Бериллий (Be ²⁺)	мг/л	0,0002	Не измеряется	Не изм	перяется
30	Бор (В, суммарно)	мг/л	0,5	1,0	1,0	
31	Бензол	мг/л	Не измеряется	1,0·10 ⁻³	1,0.10-3	
32	Бензо(а)пирен	мг/л	Не измеряется	0,010·10 ⁻³	$0,010\cdot10^{-3}$	
33	Броматы	мг/л	Не измеряется	10·10 ⁻³	10.10-3	
34	Винилхлорид	мг/л	Не измеряется	$0,50\cdot10^{-3}$	$0.50 \cdot 10^{-3}$	
35	Железо	мг/л	0,3 (0,1)*	0,2		0,1 — для исходящей питьевой воды 0,2 — для бутиллированно й питьевой воды
36	Кадмий	мг/л	0,001	0,005	0,005	
37	Кальций	мг/л	Не измеряется	Не измеряется		100 – для питьевой воды

38	Магний (Mg)	мг/л	Не измеряется	Не измеряется		у потребителя и для бутиллированн ой воды 30 - для питьевой воды у потребителя и для бутиллированно
39	Марганец (Мп, суммарно)	мг/л	0,1 (0,5)*	0,05		й воды 0,05- для питьевой воды у потребителя и бутиллированно й воды
40	Медь (Си, суммарно)	мг/л	1,0	2,0	2,0	0,20- для питьевой воды у потребителя и бутиллированно й воды
41	Молибден (Мо), суммарно)	мг/л	0,25	Не измеряется	Не измеряется	
42	Мышьяк (As, суммарно)	мг/л	0,05	0,01	0,01	
43	Никель (Ni, суммарно)	мг/л	0,1	0,02	0,02	
44	1 ()	мг/л	45	50	50	20- для питьевой воды у потребителя и для бутиллированно й воды
45	Нитрит	мг/л	Не измеряется	0,50	0,50	0,10-для исходящей питьевой воды
46	Натрий	мг/л	Не измеряется	200		100- для питьевой воды у потребителя и

						бутиллированно й воды
47	Ртуть (Hg, суммарно)	мг/л	0,0005	0,001	0,001	
48	Свинец (Рв, суммарно)	мг/л	0,03	0,01	0,01	
49	Селен (Ѕе, суммарно)	мг/л	0,01	0,01	0,01	
50	Стронций $(Sr^{2+)}$	мг/л	7,0	Не измеряется	Не изм	еряется
51	Сульфаты (SO ₄)	мг/л	500	250		100 — для питьевой воды у потребителя и бутиллированно й воды
52	Фториды (F) I и II	мг/л	1,5	1,5	1,5	
53	Фториды (F) III	мг/л	1,2			
54	Хлориды (CL ⁻)	мг/л	350	250		100-для питьевой воды у потребителя и бутиллированно й воды
55	Хлор, полностью активный Cl ₂	мг/л	Не измеряется	Не измеряется		0,4-для исходящей питьевой воды
56	Хром (Ст ⁶⁺⁾	мг/л	0,05	0,05	0,05	
57	Цианиды (CN~)	мг/л	0,035	0,05	0,05	
58	Цинк (Zn ²⁺⁾	мг/л	5,0	Не измеряется	Не изм	перяется
59	⁷ ГХЦГ (линдан)	мг/л	0,002	Не измеряется		перяется
60	ДДТ (сумма изомеров)	мг/л	0,002	Не измеряется		перяется
61	2,4-Д	мг/л	0,03	Не измеряется		еряется
62	Сурьма	мг/л	Не измеряется	5,0·10 ⁻³	5,0.10-3	
63	1,2-дихлорэтан	мг/л	Не измеряется	3,0·10 ⁻³	$3,0.10^{-3}$	
64	Эпихлоргидрин	мг/л	Не измеряется	$0,10\cdot10^{-3}$	$0,10\cdot10^{-3}$	
65	Пестициды	мг/л	Не измеряется	$0,10\cdot10^{-3}$	0,10·10 ⁻³	
66	Общее количество пестицидов	мг/л	Не измеряется	0,50·10 ⁻³	0,50·10 ⁻³	
67	Полициклические	мг/л	Не измеряется	$0,10\cdot10^{-3}$	$0,10\cdot10^{-3}$	

	ароматические углеводороды						
68	Тетрахлорэтен и Трихлорэтен	мг/л	Не измеряется	10·10 ⁻³	10.10-3		
69	Тригалометаны-Общее количество	мг/л	Не измеряется	100·10 ⁻³	100·10 ⁻³	потреби	ой воды у ителя и ированно
70	Общий органический углерод		Не измеряется	Никаких аномальных изменений		примеч	ание ⁷
71	Радон	Бк/л	Не измеряется	Не измеряется	>1000	потреби	ой воды у ителя и ированно
	1			сности питьевой воды	ı	T = .	
72	Общая а-радиоактивность	Бк/л	0,1	Не измеряется		0,1	для
73	Общая ^β -радиоактивность	Бк/л	1,0	Не измеряется		1,0	питьевой
74	Тритий	Бк/л	Не измеряется	100		100	воды у
75	Общая ориентировочная доза	мЗв / год	Не измеряется	0,10		0,10	потребит еля и бутилли рованно й воды:

Примечание:*- величина, указанная в скобках, может быть установлена по постановлению главного государственного санитарного врача соответствующей территории для конкретной системы водоснабжения на основании оценки санитарно-эпидемиологической обстановки в населенном пункте и применяемой технологии водоподготовки

⁷ Предельное значение ТОС в текущей питьевой воде рассчитывается следующим образом. В течение двух лет окисляемость и ТОС измеряются одновременно несколько раз в год. Затем результаты измерений используются для определения процентного соотношения между ТОС и окисляемостью. Установленное соотношение используется для расчета предельного значения ТОС, которое должно соответствовать предельному значению окисляемости.

Система водоочистки (Drinking water treatment)

	Казахстан (АстанаСуАрнасы) ⁸	Германия ⁹ , Берлин	Швеция ¹⁰ , Стокгольм
Этапы	Вода поступает в насосно-	«При очистке воды, прежде всего,	«Неочищенная вода из подземных или
очистки	фильтровальную станцию	снижается содержание железа, марганца,	поверхностных источников воды
	1. Хлорирование. Снижается содержание бактерий	других природных примесей, а также антропогенных или природных загрязнителей.	обрабатывается на водоочистных сооружениях, прежде чем питьевая вода будет распределена потребителям через
	2. Коагуляция. Уменьшение мутности	Другой целью обработки является	водопроводную сеть и сеть резервуаров.
	3. Отстаивание. Осветление воды	улучшение технической пригодности	Поскольку мы в Швеции традиционно
	4. Фильтрация. Уменьшение концентрации взвешенных веществ	питьевой воды для распределения воды, если в противном случае она будет иметь коррозионный эффект или могут	считали наши источники сырой воды хорошего качества, процессы очистки на водоочистных сооружениях были
	5. Повторное хлорирование.	образоваться отложения. Также может	относительно простыми. Это может вызвать
	Обеззараживание – защита питьевой	потребоваться дезинфекция.	проблемы при изменении качества сырой
	воды от внешнего загрязнения и роста микроорганизмов	Метод обработки	воды. Сырая вода из поверхностных источников требует более совершенного
	На всех этапах обработки проверяется качество воды:	Процессы обработки обычно начинаются с удаления частиц, часто путем флокуляции и фильтрации,	процесса очистки, чем вода из подземных источников. Процесс очистки может состоять из предварительной биологической
	-на микробиологические показатели 1 раз в день	которые иногда дополняются предварительным окислением. Кроме того,	очистки, флокуляции, осаждения, фильтрации и дезинфекции» ¹⁵ .
	-органолептические (запах, мутность, цвет)-12 в сутки	можно использовать мембранные процессы для удаления из воды даже очень мелких частиц. Процессы окисления, ионного	«Вода очищается механическими и химическими методами, а затем проходит через песчаные фильтры с медленной
	-остаточный хлор - ежечасно	обмена и активированного угля удаляют	скоростью, которые извлекают из воды

⁸ Адрес веб-сайта на источник информации https://www.astanasu.kz/news/people/1227/

⁹ Адрес веб-сайта на источник информации https://www.bwb.de/de/index.php

¹⁰ Адрес веб-сайта на источник информации https://www.stockholmvattenochavfall.se/en/water-and-wastewater/drinking-water/quality-and-control/
15 Адрес веб-сайта на источник информации https://www.stockholmvattenochavfall.se/en/water-and-wastewater/drinking-water/quality-and-control/
15 Адрес веб-сайта на источник информации https://www.svensktvatten.se/globalassets/forskning/vattenplattformen/a-vision-for-water.pdf

растворенные вещества. Береговая медленная песчаная фильтрация являются особенно экологически чистыми и не содержат химикатов для очистки питьевой воды. При береговой фильтрации питьевую воду получают из колодцев, которые находятся в непосредственной близости от рек и озер. Следовательно, большая часть полученной воды. таким образом, поступает косвенно из поверхностных вод. При медленной фильтрации через песок сырая вода часто берется непосредственно из рек или озер и фильтруется через слои мелкозернистого песка с очень низкой скоростью фильтрации. Береговая и медленная песчаная фильтрация очень эффективно сочетают удаление частиц, адсорбцию и разложение загрязняющих веществ (последнее - микроорганизмами в фильтрующем слое почвы).

Приоритеты исследований

Федеральное агентство по окружающей среде изучает тему очистки питьевой воды с целью оптимизации ее гигиенической безопасности и в то же время минимизации воздействия процессов очистки на окружающую среду.

Текущие исследования по очистке питьевой воды в Федеральном агентстве по

оставшиеся органические загрязнители, прежде чем они попадут в распределительную сеть» 16

«Питьевая вода Стокгольма производится на гидроузлах Норсборг и Ловё. Вода очищается в несколько этапов, прежде чем выкачивается по трубопроводной сети и доставляется к вам домой.

Каждый день мы производим около 370 000 кубометров питьевой воды для более чем одного миллиона человек в районе Стокгольма. Питьевой воды будет столько, что мы сможем наполнить Земной шар четыре раза за неделю! Питьевая вода Стокгольма мягкая, 4-6° dH.

Процесс очистки

Процесс очистки одинаков на обоих заводах. Перед откачкой в трубопроводную сеть вода очищается в несколько этапов. Очистка питьевой воды занимает около 12 часов.

- 1) Сначала вода очищается от более крупных предметов.
- 2) Добавляется сульфат алюминия, чтобы частицы слипались и опускались на дно.
- 3) Вода проходит так называемый скоростной фильтр метровый фильтр из

-

¹⁶ Адрес веб-сайта на источник информации https://www.stockholmvattenochavfall.se/globalassets/pdf1/english/certificate-kval-dekl-no-lo-eng-2019.pdf

окружающей среде:

- ↓ Береговая и медленная песчаная фильтрация;
- Безхимическая естественная или почти естественная очистка питьевой воды для удаления железа, марганца, мышьяка урана посредством эксплуатации тестовых водопроводных станций модельных очистных сооружений на территории UBA В Берлине-Мариенфельде;
- **4** химическая дезинфекция.

Департамент питьевой воды управляет исследовательскими системами в районе Берлина-Мариенфельде, чтобы моделировать вышеупомянутые процессы в лабораторном и техническом масштабе, чтобы получить результаты об их эффективности в условиях, которые являются максимально реалистичными. также используются модельные системы для децентрализованной очистки питьевой воды в исследовательских целях»

«Питьевая вода в Берлине отличается исключительным качеством и обусловлена региональным циклом. Мы следим за этим циклом: с естественной очисткой воды,

песка, в котором застревают остатки частиц.

- 4) Последний этап очистки медленный фильтр. Песочный фильтр, в котором вода очищается около восьми часов. Здесь вода также биологически очищается микроорганизмами, которые питаются веществами, которые иначе придали бы воде запах и вкус.
- 5) Перед откачкой воды по трубопроводной сети ее обрабатывают ультрафиолетовым светом, который является эффективным дезинфицирующим средством против, например, паразитов, таких как криптоспоридиум. добавляется Затем небольшое количество хлорамина обеспечения высочайшего качества до крана

Вода из озера Меларен очищается в 3 этапа, прежде чем питьевая вода будет закончена и выкачана во все домохозяйства.

Процесс очистки начинается с забора воды из озера Меларен на глубине от пяти до тридцати пяти метров. С самого начала она сохраняет хорошее качество, но, как и вся морская вода, также содержит органические вещества, которые придают воде запах и вкус и делают ее мутной. Их необходимо удалить до того, как это станет полноценной

¹¹ Источник на веб-сайте https://www.umweltbundesamt.de/trinkwasser-aufbereiten#undefined

обогащением грунтовых вод и тщательной очисткой сточных вод, которые после использования возвращаются в цикл. Все это хорошо работает. Питьевая вода в Берлине не только соответствует всем требованиям Постановления о питьевой воде Германии, но и выходит за установленные пределы. Даже Stiftung Warentest рекомендует пить воду из-под крана, а не воду в бутылках.

Водопроводная вода

Питьевая вода - лучший продукт питания в Германии, за которым ведется строгий контроль. Он должен обладать свойствами, позволяющими использовать его в течение всей жизни в неограниченных количествах без опасности для здоровья. Чтобы называться питьевой водой и считаться пишевым продуктом, она должна соответствовать Закону Германии о питьевой воде - очень строгому закону о здоровье. Летом 2003 года организаторы общенационального испытания питьевой воды заявили: «Никогда, пока имеются достоверные результаты испытаний, у немцев не было такой чистой воды, как сегодня».

Строго контролируется

Законные требования к качеству питьевой воды выше, чем для минеральной воды. Он проходит постоянные проверки качества.

питьевой водой.

В приемной камере вода впервые фильтруется через мелкоячеистую сетку, которая улавливает водные растения и другие более крупные объекты. Затем отфильтрованная вода перекачивается на гидроузел.

Три этапа очистки

Затем вода проходит три стадии очистки; химическое, механическое и биологическое. На стадии химической очистки добавляется небольшое количество сульфата алюминия, и воде дают медленно течь через отстойник.

Большинство частиц опускаются на дно и отделяются в виде шлама. Осадок обезвоживается, а затем его можно повторно использовать различными способами.

Несколько оставшихся хлопьев отфильтровываются механической очисткой; быстрые фильтры. Это песчаные пласты метровой толщины, по которым быстро течет вода.

Последний этап очистки происходит в медленных фильтрах, которые представляют собой большие открытые бассейны. Вода проходит через песчаный слой толщиной

Пробы отбираются и тестируются на регулярной основе непосредственно у потребителей в 104 пунктах отбора по всему городу. Кроме того, химический состав питьевой волы ежелневно проверяется на гидротехнических сооружениях. Для своевременного обнаружения загрязняющих веществ в питьевой воле также проводится регулярный мониторинг сырой воды из колодиев. Таким образом могут гидротехнические сооружения своевременно выявлять загрязнители в грунтовых водах на своей территории.

Питьевая вода Берлина с высоким содержанием кальция и магния, но с низким содержанием хлоридов и сульфатов прекрасно утоляет жажду. Он также имеет приятный вкус в газированном виде. Соответствующая техника имеется в продаже. Питьевая вода Берлина с низким содержанием нитратов может безопасно использоваться для приготовления детского питания.

Неэтилированный

С 1 декабря 2013 года Постановление о питьевой воде требует, чтобы литр питьевой воды мог содержать максимум 0,01 мг свинца. Питьевая вода Берлина уже

более метра за восемь часов - биологическая очистка. Есть много полезных бактерий, которые поедают органические вещества, оставшиеся в воде.

Дезинфекция и контроль

Качество контролируется на протяжении всего процесса с использованием самых современных технологий очистки и контроля.

Химические и микробиологические анализы также проводятся несколько раз в неделю. Отбор проб также продолжается под водой к пользователям. Ежегодно в различных точках трубопроводной сети и в домашних условиях берутся более 1000 проб.

Перед откачкой воды по трубопроводной сети ее обрабатывают ультрафиолетовым светом, который является эффективным дезинфицирующим средством против, например, паразитов, таких как криптоспоридиум. добавляется Затем небольшое количество хлорамина обеспечения высочайшего качества ДΟ крана.»¹⁷.

.

¹⁷ Адрес веб-сайта на источник информации https://www.stockholmvattenochavfall.se/vatten-och-avlopp/dricksvatten/vattenverk/

соответствует стандарту и содержит менее 0,005 мг свинца. В сети питьевой воды Berliner Wasserbetriebe нет свинцовых труб. Однако на последних счетчиках по направлению к вашему крану, например, в неотремонтированных или частично отремонтированных зданиях, вода может течь по старым свинцовым трубам. Это особенно опасно для младенцев и детей ясельного возраста. Владелец несет ответственность за установку здания.

Любой желающий может сдать образец воды на анализ в одной из наших аккредитованных лабораторий. Для домохозяйств, в которых живут беременные женщины или дети в возрасте до двенадцати месяцев, мы покрываем расходы на свинцовый анализ. Для этого предоставьте, пожалуйста, вашу книгу записей о беременности или свидетельство о рождении вашего ребенка.

Совершенно без хлора

Питьевая вода, поступающая из подземных водоемов, считается свободной от микробов и поэтому не требует хлорирования. Только после прорыва труб и других ремонтов трубопроводной сети эти участки требуют кратковременного хлорирования. Питьевая вода Берлина также не содержит никаких других добавок, таких как фтор для профилактики

кариеса». 12

«Девять гидротехнических сооружений обеспечивают снабжение Берлина питьевой водой. Питьевая вода в Берлине поступает из городских источников подземных вод, которые образовались в скалах возрастом более 10 000 лет. Идеальные геологические условия, обширные охраняемые водные территории строгие меры обеспечивают предосторожности высочайшее качество воды. Из примерно 650 скважин с минимальной глубиной 30 и глубиной максимальной 174 метра берлинские грунтовые воды сначала закачиваются один ИЗ девяти гидротехнических сооружений Berliner Wasserbetriebe. Там вода обрабатывается, а затем хранится в резервуарах для чистой Домашним хозяйствам. воды. промышленности и торговле Берлина требуется в среднем ок. 535 000 кубометров пресной питьевой воды. Можно обеспечить до 1.1 миллиона кубометров в сутки, что почти вдвое больше.

Водоснабжение Берлина контролируется с диспетчерских трех ведущих гидроузлов - Фридрихсхаген, Тегель и Белицхоф.

¹² Адрес веб-сайта на источник информации https://www.bwb.de/en/1583.php

Высокая производственная мощность, скоординированное взаимодействие гидротехнических сооружений и их централизованного управления устраняют снабжении. узкие места Гидротехническая станция Белицхоф - одна трех основных гидротехнических сооружений. Работает совместно заводами в юго-западной части города. Гидравлический завод расположен на берегу Ванзее. Он включает 80 колодцев, которые простираются по берегам реки Гавел. Гидравлическая станция подает в Берлина около 35 миллионов кубометров питьевой воды ежегодно.

В нормальных условиях вода не требует дополнительной обработки. Однако в очень редких случаях воду необходимо дезинфицировать.

Установка системы дозирования газообразного хлора была очевидным выбором ДЛЯ гидротехнических Berlin сооружений. Wasserbetriebe использует системы Wallace & Tiernan® на протяжении десятилетий И, как долгосрочный заказчик услуг, доверяет безопасной и безотказной работе систем и установок. Раствор хлора изготавливается из газообразного хлора на установке по производству хлора и направляется к точкам дозирования через которые распределительные линии,

частично заглублены в землю и частично установлены в здании. Установленная в 2013 г. установка хлора размещается в двух оборудование помещениях: ДЛЯ дозирования хлора и шкаф управления расположены помещении ДЛЯ требуемый дозирования хлора; газообразный хлор хранится в хлорной Последний контролируется комнате. детектором газообразного хлора.

Хлор для дезинфекции добавляется только экстренных случаях. В Концентрация настолько низка, что дезинфицирующее средство рассеивается по пути к потребителю и, таким образом, становится незаметным. Управление и регулировка всей системы осуществляется через центральный шкаф управления со встроенной системой управления технологическим процессом. Питьевая вода высокого качества всегда гарантирована». ¹³

«Круговорот воды

12

¹³ Адрес веб-сайта на источник информации https://www.evoqua.com/en/case-studies/waterworks-beelitzhof-municipal-wallace-and-tiernan/

Путь воды ведет от производства питьевой воды до очистки сточных вод. В Берлине питьевая вода извлекается из грунтовых вод, обрабатывается на водопроводных станциях распределяется среди предприятий и домашних хозяйств по трубопроводной сети. После использования они направляются в виде сточных вод через канализационную систему на насосные станции и на очистные сооружения, где проходят различные стадии очистки перед сбросом в реки. Часть этой воды просачивается, проходит естественный процесс очистки и попадает в грунтовые воды вместе с дождевой водой».

Далее внизу представлена схема очистки питьевой воды в Берлине ¹⁴

-

¹⁴ Адрес веб-сайта на источник информации https://www.bwb.de/de/wasserkreislauf.php

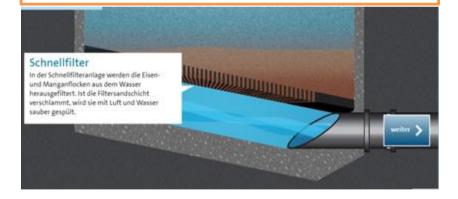
Этапы очистки питьевой воды в Берлине

Гидротехнические сооружения.

Здесь сырая вода превращается в питьевую.


Гидротехнические сооружения.

В гидротехнических сооружениях сырая вода перерабатывается в питьевую воду.


Система вентиляции.

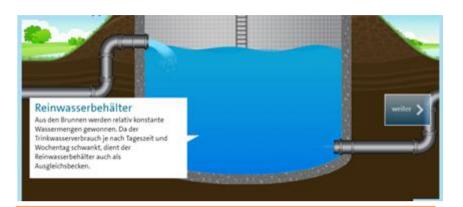
Неочищенная вода не содержит свободного кислорода, но содержит химически растворенные соединения железа и марганца, которые невозможно отфильтровать из сырой воды. Таким образом, он распыляется через форсунки в вентиляционных камерах или проходит через водосливы и, таким образом, может поглощать кислород из воздуха.

Реакционный резервуар.

Соединения железа и марганца, растворенные в сырой воде, вступают в реакцию с подаваемым кислородом, и образуют небольшие хлопья. Этот процесс происходит в реакционной емкости и занимает несколько минут. Затем смесь хлопьев и воды пропускается на фильтры.

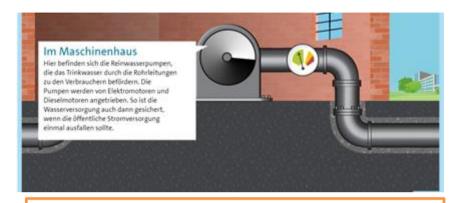
Быстрая фильтрация.

В системе быстрой фильтрации железные и марганцевые хлопья отфильтровываются из воды. Если слой фильтрующего песка заилен, его промывают воздухом и водой.


Быстрый фильтр

Быстрый фильтр-это емкость, заполненная двухметровым слоем фильтровального песка. Он называется быстрым фильтром, потому что вода проходит через песок намного быстрее, чем в природе.

Бак для чистой воды.


Теперь сырая вода стала чистой водой. Хранится в резервуаре для чистой воды.

Бак чистой воды.

Из колодцев поступает относительно постоянное количество воды. Поскольку потребление питьевой воды колеблется в зависимости от времени суток и дня недели, резервуар для чистой воды также служит уравнительным бассейном.

В машинном отделении

Здесь расположены насосы чистой воды, которые транспортируют питьевую воду по трубам к потребителям. Насосы приводятся в действие электродвигателями и дизельными двигателями. Таким образом, обеспечивается водоснабжение даже в случае выхода из струя коммунального электроснабжения.

Диспетчерская.

В диспетчерской контролируется переработка сырой воды в питьевую воду на гидроузлах и отслеживается путь питьевой воды по подземной сети трубопроводов.

Определения по микробиологическим показателям

1) Актиномицеты (Actinomicetes), стрептомицеты, лучистые грибки, группа микроорганизмов, соединяющая в себе черты бактерий и грибов. А. широко распространены в почвах, в иле водоёмов, в воздухе и на растительных остатках. Среди А. имеются патогенные формы, вызывающие актиномикоз, туберкулёз (Mycobacterium tuberculosis), дифтерию (Corynebacterium diphtheriae); некоторые виды микобактерии поражают растения; проактиномицеты образуют клубеньки на корнях ольхи и др. растений, способствуя их росту (см. Азотфиксирующие микроорганизмы). Большинство А. питается белковыми или небелковыми органическими веществами. Среди А. есть и автотрофы, а также формы, для которых источником углерода могут служить воски, смолы, парафины, нефть.

Источником азота для них служат нитраты, аммонийные соли, мочевина, аминокислоты и др. Живут А. в самых разных условиях: в аэробных и анаэробных, при t 5—7 и 45—70°С. А. участвуют в разнообразных почвенных процессах (аммонификация, разложение клетчатки, синтез и разложение перегноя). Многие А. продуцируют антибиотики, витамины, пигменты, аминокислоты и др. биологически активные вещества.

- 2) Clostridium perfringens (лат.) вид грамположительных, облигатно (строго) анаэробных (за исключением С. perfringens типа А) спорообразующих бактерий рода клостридий. Возбудитель пищевых отравлений человека, один из возбудителей газовой гангрены. Является санитарно-показательным организмом.
- 3) **Колифаги** бактериофаги (вирусы бактерии), которые заражают бактериальную клетку, размножаются в ней и убивают её. Обычно колифаги обитают в колиморфных бактериях.

Бактериофаги являются также индикаторами качества воды (степени очистки воды) из-за сходства с кишечными вирусами (энтеровирусами) человека. Они достаточно хорошо обнаруживаются.

Наиболее изучены две группы: соматические колифаги, которые инфицируют штаммы организма - хозяина (E.Coli) через рецепторы клеточных стенок; и F-специфические PHK-бактериофаги, которые инфицируют штаммы E.Coli и родственные бактерии через F- или секс-пили.

Эти группы присутствуют в большом количестве в сточных водах. В свежих фекалиях человека их содержание невелико.

Колифаги также хороши как индикаторы и из-за их большой персистентности (способность сохранять жизнь вне тела "хозяина"). Наличие или отсутствие колифаг – дополнительный критерий эффективности очистки воды.

4) **Кишечная палочка (Escherichia coli, или просто E.coli)**— Escherichia coli (или просто E.coli) - это грам-отрицательные палочковидные бактерии, принадлежащие к семейству Enterobacteriaceae, роду Escherichia (эшерихия).

E.coli является обычным обитателем кишечника многих млекопитающихся, в частности, приматов, к числу которых принадлежит и человек. Поэтому ее часто называют кишечной палочкой. В организме человека E.coli выполняет полезную роль, подавляя рост вредных бактерий и синтезируя некоторые витамины.

Однако существуют разновидности бактерий E.coli, способные вызывать у человека острые кишечные заболевания. В настоящее время выделяют более 150 типов патогенных (так называемых "энтеровирулентных") палочек E.coli, объединенных в четыре класса: энтеропатогенные (ЭПЭК), энтеротоксигенные (ЭТЭК), энтероинвазивные (ЭИЭК) и энтерогемморагические (ЭГЭК).

E.coli свидетельствует о фекальном загрязнении воды, вызывает кишечные расстройства, протекающие по типу острой дизентерии. Так как E.coli обладает одним из самых высоких коэффициентов сопротивляемости среди энтеробактерий, мерой зараженности воды считается так называемый колииндекс;

- 5) **Цисты лямблий** устойчивы к кислотам, щелочам, веществам, содержащим активный хлор, и полностью утрачивают активность лишь при кипячении в течение не менее 20 минут вызывают лямблиоз, основное заболевание человека, связанное с плохо очищенной водой;
- 6) Синегнойная палочка (Pseudomonas aeruginosa) может не только в течение долгого времени сохраняться в окружающей среде (влажной атмосфере или воде), но и успешно размножается в этой среде попадая в пораженные ткани человека, способна вызывать инфекционные заболевания мочеполовых путей, глаз, уха (отит), кожи и мягких тканей (различные дерматиты), лёгких (пневмонию), сердца (эндокардит), ЦНС (менингит) и др.;

Методы контроля качества питьевой воды в Республике Казахстан

Согласно <u>СТ РК ГОСТ Р 51232-2003 Государственному Стандарту РК «Вода питьевая. Общие требования к организации и методам контроля качества» 18 для контроля качества питьевой воды используют следующие методы определения:</u>

Таблица — Методы определения микробиологических и паразитологических показателей:

Наименование показателя	Метод определения, обозначение НД
Микробиологические и	CT PK 7.3, CT PK 7.8
паразитологические показатели для	
централизованных систем питьевого	
водоснабжения	
Микробиологические показатели для	ГОСТ 18963
нецентрализованных систем	
питьевого водоснабжения	
*-Действует до утверждения соответствующего государственного стандарта	

Таблица - Методы определения обобщенных показателей качества питьевой воды

Наименование показателя	Метод определения, обозначение НД
Водородный показатель	Измеряется рН-метром, погрешность не
	более 0,1 рН
Общая минерализация (сухой	Гравиметрия (ГОСТ 18164)
остаток)	
Жесткость общая	Титриметрия (ГОСТ 4151)
Окисляемость перманганатная	Титриметрия [2]*
Нефтепродукты (суммарно)	ИК-спектрофотометрия [3]*
Поверхностно-активные вещества	Флуориметрия, спектрофотометрия
(ПАВ) анионо-активные	
Фенольный индекс	Спектрофотометрия [4]*
*-Действует до утверждения соответствующего государственного стандарта	

Таблица - Методы определения содержания некоторых неорганических веществ в питьевой воде

Наименование показателя	Метод определения, обозначение НД
Азот аммонийный (NH^{+}_{4})	Фотометрия (ГОСТ 4192)
Алюминий (Al^{3+})	Фотометрия (ГОСТ 18165).
	Атомно-абсорбционная
	спектрофотометрия, по СТ РК ГОСТ Р
	51309.
	Атомно-эмиссионная спектрометрия по

¹⁸ Ссылка на источник документа: 1) https://online.zakon.kz/document/?doc_id=30015745#pos=28;-52
2) https://files.stroyinf.ru/Data2/1/4293739/4293739359.pdf

	СТ РК ГОСТ Р 51309.
	Флуориметрия [5]*
Барий (Ba ²⁺)	Атомно- эмиссионная спектрометрия по СТ РК ГОСТ Р 51309.
	Фотометрия [6]*
Бериллий (Be ²⁺)	Флуориметрия (ГОСТ 18294).
1 /	Атомно-абсорбционная
	спектрофотометрия по СТ РК ГОСТ Р 51309
	Атомно- эмиссионная спектрометрия по СТ РК ГОСТ Р 51309.
Бор (В, суммарно)	Флуориметрия (СТ РК ГОСТ Р 51210).
	Спектрофотометрия [7]*. Флуориметрия [5]*.
	Атомно- эмиссионная спектрометрия по СТ РК ГОСТ Р 51309.
Железо (Fe, суммарно)	Фотометрия (ГОСТ 4011).
	Атомно-абсорбционная
	спектрофотометрия по СТ РК ГОСТ Р 51309.
	Атомно- эмиссионная спектрометрия по СТ РК ГОСТ Р 51309.
Кадмий (Cd, суммарно)	Фотометрия [8]*.
	Атомно-абсорбционная
	спектрофотометрия по СТ РК ГОСТ Р 51309.
	Атомно-эмиссионная спектрометрия по СТ РК ГОСТ Р 51309
Марганец (Мп, суммарно)	Фотометрия (ГОСТ 4974).
	Атомно-абсорбционная
	спектрофотометрия по СТ РК ГОСТ Р 51309.
	Атомно-эмиссионная спектрометрия по СТ РК ГОСТ Р 51309
Медь(Си, суммарно)	Фотометрия (ГОСТ 4388).
	Атомно-абсорбционная
	спектрофотометрия по СТ РК ГОСТ Р 51309.
	Атомно-эмиссионная спектрометрия по
	СТ РК ГОСТ Р 51309.
	Флуориметрия [5]*.
	Инверсионная вольтамперометрия [9]*
Молибден (Мо, суммарно)	Фотометрия (ГОСТ 18308).
	Атомно-абсорбционная

	спектрофотометрия по СТ РК ГОСТ Р 51309.
	Атомно-эмиссионная спектрометрия по СТ РК ГОСТ Р 51309.
Мышьяк (As, суммарно)	Фотометрия (ГОСТ 4 152). Инверсионная вольтамперометрия [10]*. Титриметрия [11]*. Атомно-абсорбционная спектрофотометрия по СТ РК ГОСТ Р 51309
	Атомно-эмиссионная спектрометрия по СТ РК ГОСТ Р 51309.
Никель (Ni, суммарно)	Атомно-абсорбционная спектрофотометрия по СТ РК ГОСТ Р 51309.
	Атомно-эмиссионная спектрометрия по СТ РК ГОСТ Р 51309. Фотометрия [13]*
Нитраты (по N0 ₃ -)	Фотометрия (ГОСТ 18826, [14]*). Спектрофотометрия [15]*. Ионная хроматография [16]*
Нитриты (N0 ₂ -)	Фотометрия (ГОСТ 4192). Ионная хроматография [16]*. Спектрофотометрия [17]*. Флуориметрия [5]*
Ртуть (Hg, суммарно)	Атомно-абсорбционная спектрометрия (СТ РК ГОСТ Р 51212)
Свинец (РЬ, суммарно)	Фотометрия (ГОСТ 18293). Атомно-абсорбционная спектрофотометрия по СТ РК ГОСТ Р 51309. Атомно-эмиссионная спектрометрия по СТ РК ГОСТ Р 51309. Флуориметрия [18]*.
Селен (Se, суммарно)	Инверсионная вольтамперометрия [9]* Флуориметрия (ГОСТ 19413). Атомно-абсорбционная спектрофотометрия по СТ РК ГОСТ Р 51309 Атомно-эмиссионная спектрометрия по СТ РК ГОСТ Р 51309.
Стронций (Sr ²⁺)	Эмиссионная пламенная фотометрия (ГОСТ 23950).
Сульфаты (SO ₄ ²⁻)	Турбидиметрия, гравиметрия (ГОСТ

	4389).
	Ионная хроматография [16]*
Фториды (F⁻)	Фотометрия, потенциометрия с
	ионоселективным электродом (ГОСТ
	4386).
	Флуориметрия [5]*.
	Ионная хроматография [16]
Хлориды (СГ)	Титриметрия (ГОСТ 4245).
	Ионная хроматография [16]*
Хром	Атомно-абсорбционная
	спектрофотометрия по СТ РК ГОСТ Р
	51309.
	Атомно-эмиссионная спектрометрия по
	СТ РК ГОСТ Р 51309.
	Фотометрия [19]*.
	Хемилюминометрия [5]*
	Фотоколориметрия по ГОСТ 26449.1
Цианиды (CN ⁻)	Фотометрия [20]*
Цинк (Zn ²⁺)	Фотометрия (ГОСТ 18293).
	Атомно-абсорбционная
	спектрофотометрия по СТ РК ГОСТ Р
	51309.
	Атомно-эмиссионная спектрометрия по
	СТ РК ГОСТ Р 51309.
	Флуориметрия [5]*.
	Инверсионная вольтамперометрия [21]*
* Действует до утверждения соответс	гвующего государственного стан-
дарта	

Таблица - Методы определения содержания некоторых органических веществ в питьевой воде

вещееть в интверои воде	
Наименование показателя	Метод определения, обозначение НД
у-изомер ГХЦ (линдан)	Газожидкостная хроматография (СТ РК
	ΓΟCT P 51209)
ДДТ (сумма изомеров)	Газожидкостная хроматография
	(СТ РК ГОСТ Р 51209)
2,4-Д (2,4-дихлорфеноксиуксусная	Газожидкостная хроматография [22]*
кислота)	
Четыреххлористый углерод	Газожидкостная хроматография [23]*
Бензол	Газожидкостная хроматография [23]*
Бенз(а)пирен	Хроматография [24]*.
	Флуориметрия *
* Действует до утверждения соответствующего государственного стан-	
ларта	

Таблица — Методы определения вредных химических веществ, поступающих и образующихся в процессе обработки воды

Наименование показателя	Метод определения, обозначение НД
Хлор остаточный свободный	Титриметрия (ГОСТ 18190)
Хлор остаточный связанный	Титриметрия (ГОСТ 18190)
Хлороформ (при хлорировании	Газожидкостная хроматография [25]*
воды)	
Озон остаточный	Титриметрия (ГОСТ 18301)
Формальдегид (при озонировании	Фотометрия [26]*.
воды)	Флуориметрия [27]*
Полиакриламид	Фотометрия (ГОСТ 19355)
Активированная кремнекисло-	Фотометрия [28]*
та (по Si)	
Полифосфаты (по РО ₄ ³⁻)	Фотометрия (ГОСТ 18309)
* Действует до утверждения соответст	вующего государственного стан-
дарта	

Таблица — Методы определения органолептических свойств питьевой воды

Наименование показателя	Метод определения, обозначение НД
Запах	Органолептика (ГОСТ 3351)
Привкус	Органолептика (ГОСТ 3351)
Цветность	Фотометрия ГОСТ (3351)
Мутность	Фотометрия ГОСТ (3351)
	Нефелометрия [29]*.
	Измерение мутномером с погрешностью
	определения не более 10%.
* Действует до утверждения соотво	етствующего государственного стан-
дарта	

Таблица — Методы определения радиационной безопасности питьевой воды

Наименование показателя	Метод определения, обозначение НД
Общая α-радиоактивность	Радиометрия [30]*
Общая в -радиоактивность	Радиометрия [31]*
* Действует до утверждения соответствующего государственного стан-	
дарта	

Согласно данному стандарту, «допускается применять другие методы определений, соответствующие требованиям 3.4 <u>CT PK ГОСТ P 51232-2003»</u> .

Для показателей, не включенных в таблицы, применяют методики, отвечающие требованиям 3.4 <u>СТ РК ГОСТ Р 51232-2003</u>, а при их отсутствии — методику разрабатывают и аттестовывают в установленном порядке.

Библиография:

- [1] МИ 2427-97 Рекомендация. ГСИ. Оценка состояния измерений в испытательных и измерительных лабораториях.
 - [2] ИСО 8467-93 Качество воды. Определение перманганатного индекса.

Указания по внедрению нового ГОСТ 2761—84 «Источники централизованного хозяйственно-питьевого водоснабжения. Гигиенические, технические требования и правила выбора». Утверждены Минздравом СССР. М., 1986

- [3] РД 52.24.476-95 Методические указания. ИК-фотометрическое определение нефтепродуктов в водах. Утверждены Росгидрометом
- [4] РД 52.24.488-95 Методические указания. Фотометрическое определение суммарного содержания летучих фенолов в воде после отгонки с паром. Утверждены Росгидрометом.
- ИСО 6439-90 Качество воды. Определение фенольного индекса с 4-аминоантипирином. Спектрометрические методы после перегонки
- [5] МУ 10.05.112.2002-МУ 10.05.136.2002 Сборник методических указаний Измерение массовой концентрации веществ люминесцентными методами в объектах окружающей среды. Утвержден Комитетом Государственного санитарно-эпидемиологического надзора Минздрав Республики Казахстан;.
- [6] У МИ-87 Унифицированные методы исследования качества вод. Часть 1, кн. 2, 3. Методы химического анализа вод. СЭВ, М., 1987
- [7] ИСО 9390—90 Качество воды. Определение бората. Спектрометрический метод с использованием азометина- Н
- [8] РД 52.24.436—95 Методические указания. Фотометрическое определение в водах кадмия с кадионом. Утверждены Росгидрометом
- [9] РД 52.24.371—95 Методические указания. Методика выполнения измерений массовой концентрации меди, свинца и кадмия в поверхностных водах суши инверсионным вольтамперометрическим методом. Утверждены Росгидрометом
- [10] РД 52.24.378—95 Методические указания. Инверсионное вольтамперометрическое определение мышьяка в водах. Утверждены Росгидрометом
- [11] РД 33-5.3.02—96 Качество вод. Количественный химический анализ вод. Методика выполнения измерений массовой концентрации мышьяка в природных и очищенных сточных водах титрометрическим методом с солью свинца в присутствии дитизона
- [12] РД20.1:2:3.19-95 Методики выполнения измерений бериллия, ванадия, висмута, кадмия, кобальта, меди, молибдена, мышьяка, никеля, олова, свинца, селена, серебра, сурьмы в питьевых природных и сточных водах
- [13] РД 52.24.494-95 Методические указания. Фотометрическое определение никеля с диметилглиоксимом в поверхностных водах суши. Утверждены Росгидрометом

- [14] РД 52.24.380—95 Методические указания. Фотометрическое определение в водах нитратов с реактивом Грисса после восстановления в кадмиевом редукторе. Утверждены Росгидрометом
- [15] ИСО 7890-1-86 Качество воды. Определение содержания нитратов. Часть 1. Спектрометрический метод с применением 2,6-диметилфенола.
- ИСО 7890-2—86 Качество воды. Определение содержания нитратов. Часть 2. Спектрометрический метод с применением 4-фторфенола после перегонки.
- ИСО 7890-3—88 Качество воды. Определение содержания нитратов. Часть 3. Спектрометрический метод с применением сульфосалициловой кислоты
- [16] ИСО 10304-1—92 Качество воды. Определение растворенных фторида, хлорида, нитрита, ортофосфата, бромида, нитрата и сульфата методом жидкостной ионной хроматографии. Часть 1. Метод для вод с малыми степенями загрязнения.
- ИСО 10304-2—95 Качество воды. Определение растворенных бромида, хлорида, нитрата, нитрита, ортофосфата и сульфата методом жидкостной ионной хроматографии. Часть 2. Метод для загрязненных вод
- [17] ИСО 6777—84 Качество воды. Определение нитритов. Молекулярно-абсорбционный спектрометрический метод
- [18] ИНД Ф 14.1:2:4.41-95 Методика выполнения измерений массовой концентрации свинца криолюминесцентным методом в пробах природной, питьевой и сточной воды на анализаторе жидкости «Флюорат-02». Утверждена Минлрироды России
- [19] РД 52.24.446-95 Методические указания. Фотометрическое определение в водах хрома (VI) с дифенил-карбазидом. Утверждены Росгидрометом
- [20] ИСО 6703-1—84 Качество воды. Определение содержания цианидов. Часть 1. Определение общего содержания цианидов.
- ИСО 6703-2—84 Качество воды. Определение содержания цианидов. Часть 2. Определение содержания легко выделяемых цианидов.
- ИСО 6703-3—84 Качество воды. Определение содержания цианидов. Часть 3. Определение содержания хлористого циана
- [21] РД 52.24.373—95 Методические указания. Методика выполнения измерений массовой концентрации цинка в поверхностных водах суши инверсионным вольтамперометрическим методом. Утверждены Росгидрометом
- [22] РД 52.24.438—95 Методические указания. Методика выполнения измерений массовой концентрации дикотекса и 2,4-Д в поверхностных водах суши газохроматографическим методом. Утверждены Росгидрометом
- [23] МУ 10.05.040.2002 МУ 10.05.054.2002 Сборник методических указаний. Определение концентрации химических веществ в воде централизованного хозяйственно-питьевого назначения». Утвержден Комитетом Государственного санитарно-эпидемиологического надзора Минздрава Республики Казахстан;
- [24] РД 52.24.440-95 Методические указания. Определение суммарного содержания 4-7-ядерных полициклических ароматических углеводородов (ПАУ) в водах с использованием тонкослойной хроматографии в сочетании с люминесценцией. Утверждены Росгидрометом

- [25] РД 52.24.482-95 Методические указания. Газохроматографическое определение летучих хлорзамещенных углеводородов в водах. Утверждены Росгидрометом
- [26] РД 52.24.492-95 Методические указания. Фотометрическое определение в водах формальдегида с ацетилацетоном. Утверждены Росгидрометом
- [27] ПНД Ф 14.1:2:4.120-96 Методика выполнения измерений массовой концентрации формальдегида флуориметрическим методом в пробах природной, питьевой и сточной воды на анализаторе жидкости «Флю-орат-02». Утверждена Минприроды России
- [28] РД 52.24.432—95 Методические указания. Фотометрическое определение кремния в виде синей (восстановленной) формы молиб-докремневой кислоты в поверхностных водах суши. Утверждены Росгидрометом.
- РД 52.24,433—95 Методические указания. Фотометрическое определение кремния в виде желтой формы молибдокремневой кислоты в поверхностных водах суши. Утверждены Росгидрометом
 - [29] ИСО 7027-90 Качество воды. Определение мутности
- [30] ИСО 9696-92 Качество воды. Измерение «большой альфа» активности в неминерализованной воде, Метод с применением концентрированного источника
- [31] ИСО 9697-92 Качество воды. Измерение «большой бета»- активности в неминерализованной воде
- [32] МИ 2334-95 Рекомендация. ГСИ. Смеси аттестованные. Порядок разработки, аттестации и применения
- [33] МИ 2335-95 Рекомендация. ГСИ. Внутренний контроль качества результатов количественного химического анализа